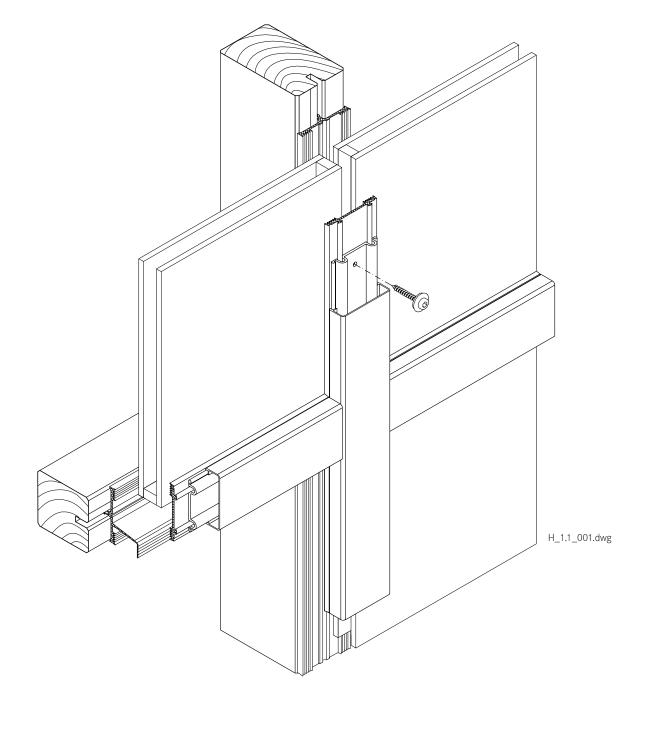
Norden Facade H

AC A DEN

1.1	Norden Facade H - System	3
1.1.1 1.1.2 1.1.3 1.1.4	System properties System cross sections and inner seals - facade System cross sections and inner seals - roof Cover strips and outer seals Norden Facade H -	3 7 13 16
1.2	Processing notes	19
1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 1.2.7 1.2.8 1.2.9 1.2.10	Material information Profile design Mullion-transom joint Tips for laying seals Seals - Facade Seals - roof Glass inset and glass support Screw fittings Flat cover strip DL 5073 / DL 6073 Slab insulation Norden Facade H -	19 21 22 28 30 39 45 57 61 62
1.3	Design	65
1.3.1 1.3.2 1.3.3 1.3.4 1.3.5	Pane support variants System cross sections System details Structural attachments Installing windows and doors	65 68 69 74 85



System properties

1.1

Timber facade system with direct screw fittings

System properties

1.1

Norden Facade H

- The Norden Facade System H provides a complete range of products in 50, 60 and 80 mm widths to produce vertical and inclined glazing on a supporting timber substructure.
- Norden Facade H is characterised by direct screw fittings and the milled central groove.
- The inner seal is pressed directly into the transom groove on the mullion and guarantees precise guidance of the sealing section.
- The outer seal of the clamping strip is screwed directly on to the timber construction.
- The homogeneous glazing system satisfies all technical and aesthetic standards.
- The certificate 'Mullion and transom facade components to passive house standard' was issued for the Norden Facade H system widths 50 and 60 mm.

Facades with

inclinations up to

Approval Z-19.14-1280

Specifications:		Facade 5 mm sealing height	20°; overlapping inner seals	Roof ≥ 2° inclination
System widths		50, 60, 80 mm	50, 60, 80 mm	50, 60, 80 mm
Air permeability EN 12152		AE	AE	AE
Watertightness	Static	RE 1650 Pa	RE 1650 Pa	RE 1350 Pa*
EN 12154/ENV 13050	Dynamic	250 Pa/750 Pa	250 Pa/750 Pa	
Resistance	Permitted load	2 kN/m ²	2 kN/m²	2 kN/m ²
to wind load EN 13116	Increased load	3 kN/m ²	3 kN/m²	3 kN/m²
Impact resistance EN 14019		E5 / I5	E5 / I5	Increased require- ments in accordance with Cahier 3228 du CSTB Méthode d'essai de choc sur verrière Weight 50 kg Head 2.4 m
Glass weight		≤ 670 kg	≤ 670 kg	≤ 670 kg
Burglar resistance DIN EN 1627		RC2	RC2	
*the test was carried out using	g a water volume of 3.4l/(r	m²min) - above the amount required	by the standard	
Fire protection app	oroval:			
System width 60	G30 / facade 5 m		Approval Z-19.14-12	

Passive house certificates:

Passivhaus Institut Dr. Feist

Frame size 1.20 x 2.50 m	U _{cw} value W/(m²K)	Spacers/Glass carriers
Custom width EO	$U_{cw} = 0.79 \text{ W/(m}^2\text{K)}$	Swisspacer V/Glass carrier ALU
System width 50	$U_{cw}^{0} = 0.78 \text{ W/(m}^{2}\text{K)}$	Swisspacer V/Glass carrier GFK
0	$U_{cw} = 0.79 \text{ W/(m}^2\text{K)}$	Swisspacer V/Glass carrier ALU
System width 60	$U_{cw} = 0.78 \text{ W/(m}^2\text{K)}$	Swisspacer V/Glass carrier GFK

F30 / facade 5 mm sealing height

NODDEN THUILDEN

System properties

1.1 1

Certifications, authorisations, CE mark (Section 9)

The tests we have carried out provide contractors and planners with certainty as well as the ability to use the test results and product passports. For example, they might use this information to issue the CE mark.

Permeability/Safety

- The Norden Facade sealing geometry prevents moisture ingress.
- Condensation is guided away in a controlled manner.
- Norden Facade offers slotted and overlapping sealing sys-tems for vertical glazing. Overlapping systems have been tested for inclined facades up to 20°.
- Seal flaps increase the safety and impermeability of the installation on vertical glazing.
- For roof glazing, a special Norden Facade sealing system with offset sealing sections is used. This keeps the supporting structure level during planning and pro-duction processes.
- Sealing the transom rebate allows flat roofs to be created with an incline of ≥ 2°.
- Creation of the required drainage takes place at the construction site by pushing together the seals in the facade or slotting together the offset sealing sections in the facade or roof.

Insulation/Thermal Separation (Section 9)

The Norden Facade System H has excellent thermal properties. A heat transfer coefficient of U_f for frames of up to 0.6 W/(m^2) are achieved.

Noise insulation of the glass facade (Section 9)

The noise insulating properties of a facade depend on a variety of factors, each of which affects the properties in a different way. The task of the planner is to expertly select the optimum design on a case-by-case basis. Different combinations of frame profiles, glazing systems and noise reducing glass have vastly different effects on noise insulation. Investigations and measurements performed by us are just examples of a huge range of possibilities and serve only as a guideline.

Fire protection (Section 9)

Outstanding fire protection properties are achieved by small additions to the system and the use of fire-resistant glass. The Norden Facade H in G 30 and F 30 have general ap-provals by the building authorities in Germany in accord-ance with DIN 4102 Part 13.

The following applies to fire-resistant glass following authorisation:

- Mandatory use of Norden Facade stainless steel pressure strips or Norden Facade stainless steel cover strips.
- Identical sealing geometries; individual seal types (different materials) must be selected according to the authorisation.
- All requirements defined in the authorisation must be adhered to.

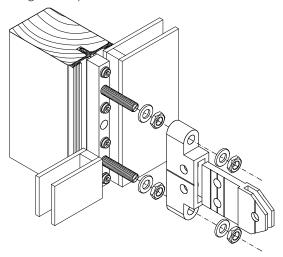
Burglar resistance (Section 9)

The Norden Facade System H has burglar resistant properties. The test was performed according to DIN EN 1627. Fa-cades in resistance class RC2 can be mounted on the system widths 50 mm, 60 mm and 80 mm.

Class RC2 is classified as a moderate risk. It is recom-mended for use in residential, commercial and public buildings.

Very few constructive measures are needed to achieve the burglary-resistant properties; tested panels must also be installed.

The appearance of burglar-resistant facades using Norden Facade System H is the same as the normal construc-tion. All benefits of using threaded tubes are preserved. The benefits of direct screw fittings in the central groove are preserved.



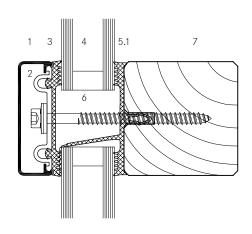
System properties

1.1

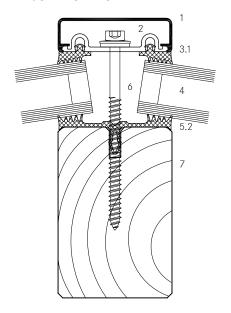
Norden Facade SOL sun protection (Section 6)

Alongside the usual measures to prevent glare and excessive energy irradiation, we offer a specially developed system of outside lamellae. Particular attention has been paid here to ensure attachment and assembly of these can be done easily with Norden Facade systems whilst meeting architectural and cli-matic requirements. Glass panes and clamping strips are not subject to any load from application of the sun pro-tection. Assembly and sealing are simple and efficient.

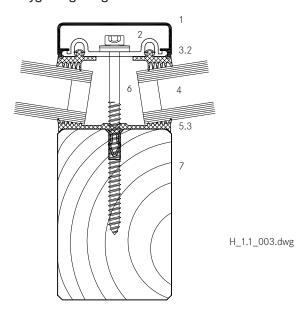
H_1.1_002.dwg


1.1 2

Inner seal 5 mm tall / 1 drainage level


Vertical glazing mullion

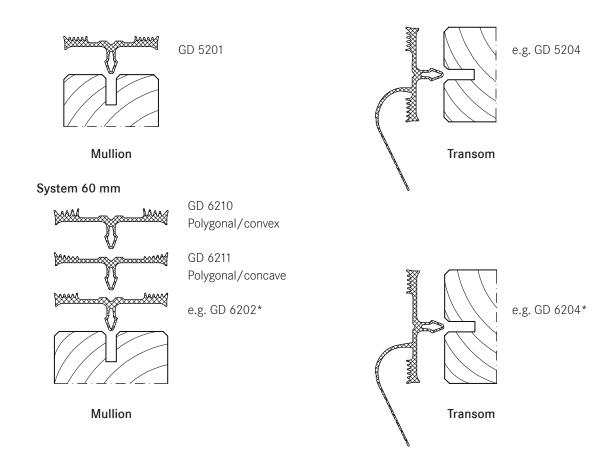
Vertical glazing transom

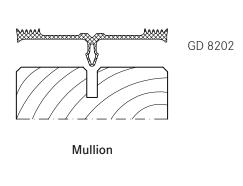


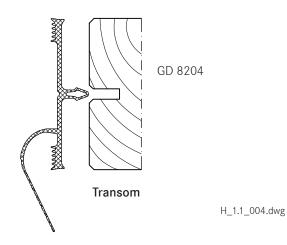
Polygonal glazing mullions - convex 3° - 15°

- 1 Cover strip
- 2 Pressure profile
- 3 Outer seal
- 3.1 Outer seal convex polygonal glazing
- 3.2 Outer seal concave polygonal glazing
- 4 Glass / panel

Polygonal glazing mullions - concave 3° - 10°

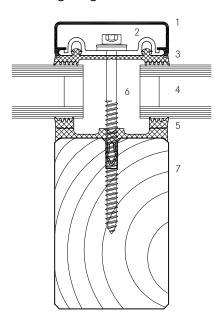

- 5 Inner seal
- 5.1 Inner sealing using a seal flap
- 5.2 Inner seal convex polygonal glazing
- 5.3 Inner seal concave polygonal glazing
- 6 System screw fittings
- 7 Timber profile


1.1 2

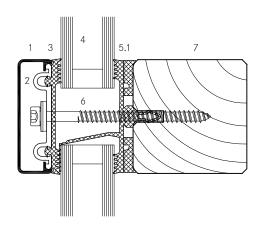

Inner seal 5 mm tall / 1 drainage level

System 50 mm

System 80 mm



^{*}seals for different requirements have the same geometries. They are distinguished by their different designations, e.g. G30 or F30 to match the corresponding classifications and fire-resistant glass.



Inner seal 10 mm tall / 2 overlapping drainage levels

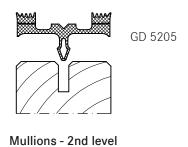
Vertical glazing mullion - 2nd level*

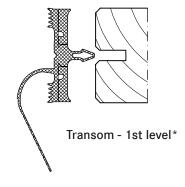
Vertical glazing transom -1st level*

H_1.1_003.dwg

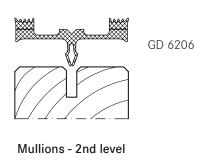
- 1 Cover strip
- 2 Pressure profile
- 3 Outer seal
- 4 Glass / panel

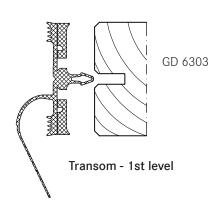
- 5 Inner seal 10 mm
- 5.1 Inner sealing using a seal flap 10 mm
- 6 System screw fittings
- 7 Timber profile

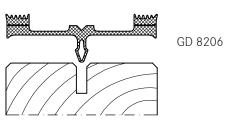

 $^{^{\}star}$ tested system for vertical facades and facades with an incline up to 20 $^{\circ}$



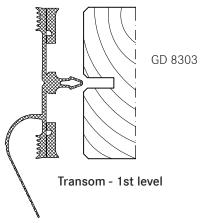
1.1 2


Inner seal 10 mm tall / 2 overlapping drainage levels


System 50 mm

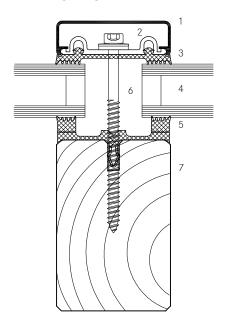


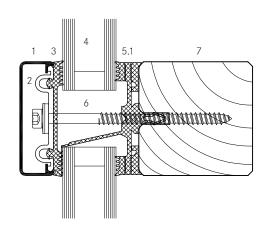
System 60 mm



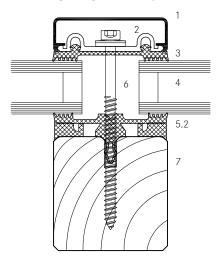
System 80 mm

H_1.1_004.dwg


^{*}System 50 mm upon request


1.1 2

Inner seal 12 mm tall / 3 overlapping drainage levels


Vertical glazing main mullion - 3rd level*

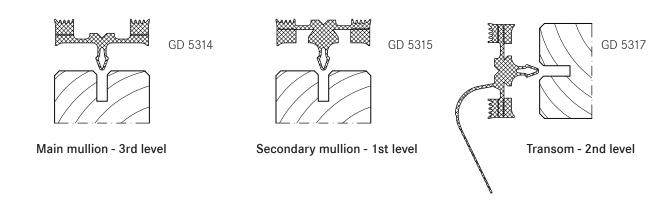
Vertical glazing transom - 2nd level*

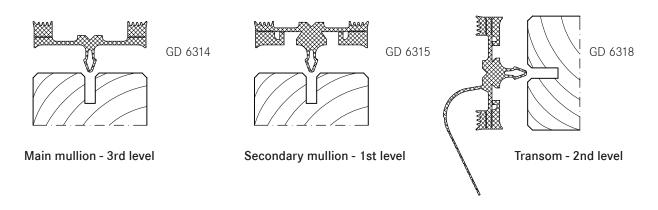
Vertical glazing secondary mullion - 1st level

H_1.1_003.dwg

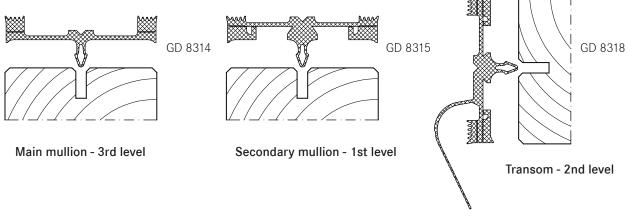
- 1 Cover strip
- 2 Pressure profile
- 3 Outer seal
- 4 Glass / panel

- 5 Inner seal 12 mm main mullion
- 5.1 Inner seal using a seal flap
- 5.2 Inner seal 12 mm secondary mullion
- 6 System screw fittings
- 7 Timber profile


 $^{^{\}star}$ tested system for vertical facades and facades with an incline up to 20 $^{\circ}$


1.1 2

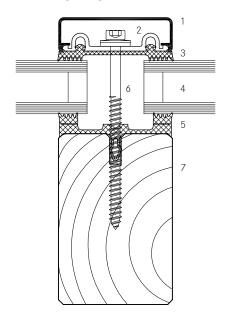
Inner seal 12 mm tall / 3 overlapping drainage levels

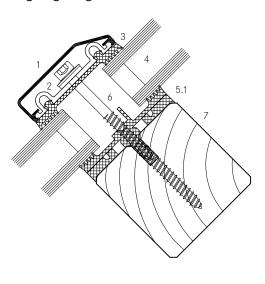

System 50 mm

System 60 mm

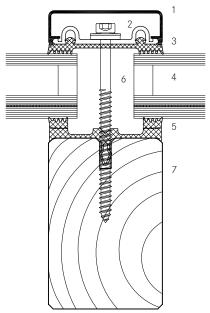
System 80* mm

^{*}System 80 mm upon request

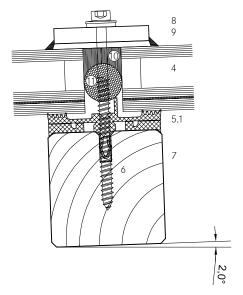

H_1.1_004.dwg


1.1 3

Inner seal 10 mm tall / 2 overlapping levels


Inclined glazing rafter

Angled glazing transom

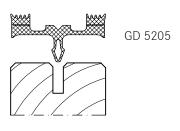


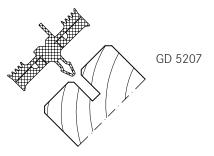
Angled glazing rafter ≥ 2° inclination

- 1 Cover strip
- 2 Pressure profile
- 3 Outer seal
- 4 Glass / panel
- 5 Inner seal 10 mm rafter
- 5.1 Inner seal 10 mm transom

Angled glazing transom ≥ 2° inclination

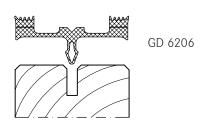
H_1.1_003.dwg


- 6 System screw fittings
- 7 Timber profile
- 8 Hold-down clamp
- 9 Washer
- 10 All weather silicone seal
- 11 Rope seal

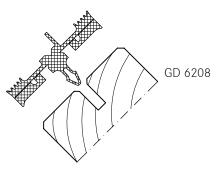

1.1 3

Inner seal 10 mm tall / 2 overlapping levels

System 50 mm

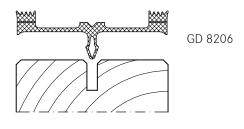


Rafter - 2nd level

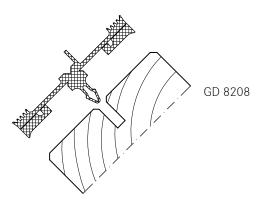


Transom - 1st level

System 60 mm



Rafter - 2nd level

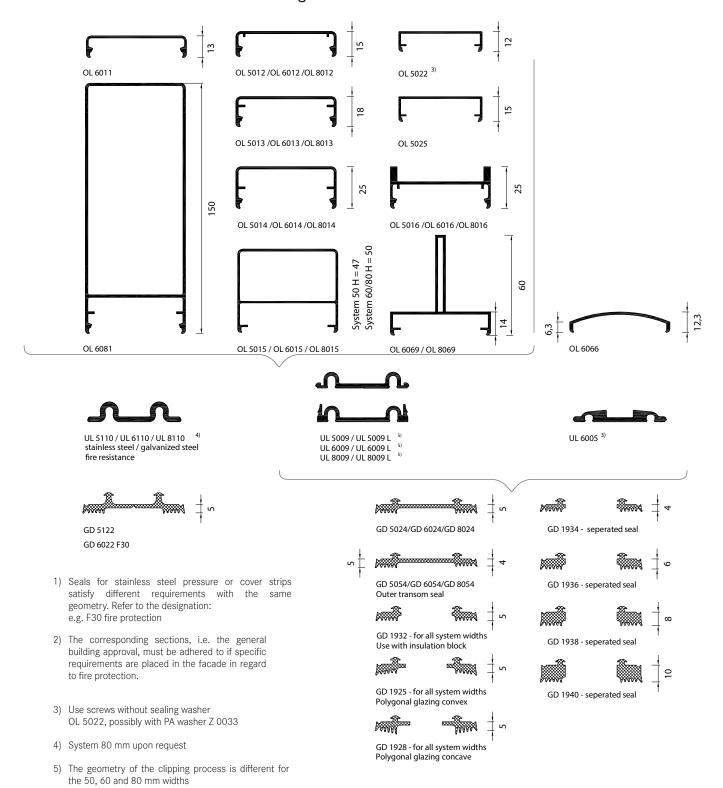


Transom - 1st level

System 80 mm

Rafter - 2nd level

Transom - 1st level



Cover strips and outer seals

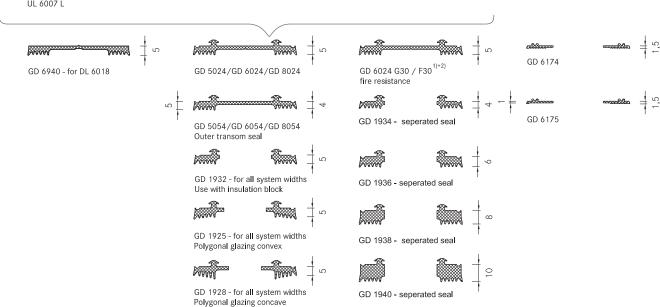
<u>1.1</u> 4

Aluminium - concealed screw fittings

DL 5073/DL 6073 ³⁾

Cover strips and outer seals

Stainless steel -Aluminium -Stainless steel -Flat cover strip concealed visible visible DL 5073/DL 6073 screw fittings screw fittings screw fittings DL 5061/DL 6061 DL 5059/DL 6059/DL 8059 DL 6018 / stainless steel DL 5071/DL 6071 20


DL 6044 / stainless steel

DL 5067/DL 6067

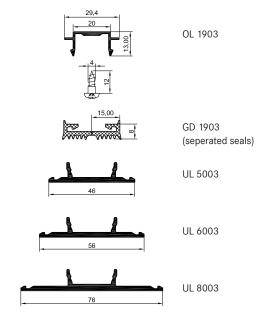
OL 6064 / stainless steel

UL 6007 L

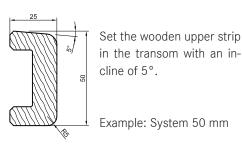
Cover strips and outer seals

<u>1.1</u> 4

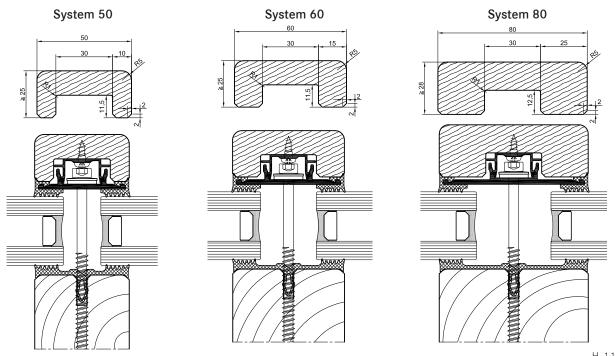
Wood covering strips


Wooden cover strips can be easily mounted to mullions and transoms using aluminium top or lower bars. The pressure profile UL 5003/UL 6003/UL 8003 acts as a clamping strip.

Assembly: apply the two-piece GD 1903 outer seal to the upper strip attach to the system using screws. Divide the OL 1903 into 80 mm long pieces and attached centrally using 3 screws to the wooden cover strip at 300 mm intervals and then clip to the upper strip.


The wooden cover strip to be provided by the customer is a supplement to the Norden Facade Systemware and, if necessary, mechanically due to the natural properties of wood

weathering to secure. Guidelines for the use of exterior wood should be followed.


(Please see section 1.2.5 on assembling the outer seal)

Transom

Mullion

Material information

1.2

Wood type and quality

The wooden load-bearing substructure is used for mounting the glazing and must meet all load and suitability requirements. The profile dimensions and choice of materials are key. The type of wood chosen depends on the client, architect and/or processor.

All wood materials are produced using wood types permitted by the current Eurocode 5 (DIN EN 1995-1) standard. Alongside the mature solid wood sections and laminated solid timbers, facade construction is increasingly using a multi-layer construction method. Due to its stability against deformations, we recommend using plywood sections. The following minimum requirements must be met for all wooden materials:

- · Softwood, strength class C24
- Laminated timber, strength class GL24h
- For fireproof glazing, pay attention to the specifications given in the relevant authorisations.

The use of comparable hardwoods is also permitted.

Wood type	Strength class	Elastic modulus E _{0,mean} [kN/cm²]
Spruce, fir	C16	800
Pine, larch, spruce, fir	C24	1100
Douglas fir, southern pine	C30	1200
Western Hemlock	C35	1300
Yellow Cedar	C40	1400
Oak, teak, keruing	D30	1100
Beech	D35_	1200
Beech, azalea, intsia	D40	1300
Angelique (Basralocus)	D40	1300
Azobé (Bongossi)	D60	1700
Laminated timber made using	wood from class:	
C24	GL24h	1160
C30	GL28h_	1260
C35	GL32h	1370
C40	GL36h	1470
Laminated veneer:		
Kerto Q		1000-1050
Kerto S		1380
Kerto T		1000
Multiplex sheets:		
(plywood)		900-1600
The woods and values mentioned her	o are evamples for qui	dance only

The woods and values mentioned here are examples for guidance only. Exact values for your choice should be determined with the supplier and according to applicable standards.

Seal profiles

Norden Facade seals are organic natural rubber materials based on EPDM and conform to the DIN 7863 standard, non-cellular elastomer sealing profiles for window and facade construction. Compatibility with contact media should tested by the processor, particularly when using plastic glazing and making structural joints with non-Norden Facade products. Fire seals are special products; their specific data are filed with DIBt (German Centre of Com-petence for Construction).

Sealing the rebate with all weather silicone seal is pos-sible.

All weather silicone seal

Only certified materials may be used for sealing the rebate with all-weather silicone. Pay attention to all infor-mation provided by the manufacturer and the sealing work must be carried out by trained persons. It is recom-mended that a licensed and certified specialist contrac-tor is hired for this purpose. We further refer you to the DIN 52460 standard and IVD data sheets (Trade Associ-ation for Sealants).

The compatibility of the materials is particularly important when using all-weather silicone. In this case, the compatibility of the sealant with the edge bonding of the glass and the backfill of the joints. If self-cleaning glass is used, the compatibility must be established in advance. Glass sealants and edge bonding must be UV-resistant. The incline of roofs should also be taken into account. Information about UV-resistance can be requested from the manufacturer. Silicone edge bonding generally pro-vides better UV-resistance than polysulfide-based ma-terials. The advantage of silicone lies in its high vapour sealing properties which is particularly useful when using more volatile argon fillings.

Highly elastic, weatherproof and UV-resistant seals meet the widest range of demands for reliable joints.

Aluminium profiles

The aluminium profiles we supply are generally made from EN AW 6060 according to DIN EN 573-3, T66 ac-cording to DIN EN 755-2.

1.2

Material information

Coating the aluminium

Alongside anodic oxidation, with the corresponding pre-treatment, conventional coating methods such as air-drying multi-layer coating systems (wet coating) or thermosetting coatings (stove enamelling / powder-coating) can be used. By using different mass distribution, longitudinal shadow formation is possible with cover strips DL 5073 and DL 6073. Resulting actions are to be taken with the agreement of the coater.

Longitudinal expansions in aluminium profiles exposed to temperature stress

When cutting the cover and pressure profiles from aluminium, allowance should be made for temperature-induced longitudinal expansion.

The theoretical rod lengths ℓ should be shortened by:

$$\triangle \ell = \alpha^{\mathsf{T}} \cdot \Delta \mathsf{T} \cdot \ell$$

Example:

 $\Delta \ell = 24 \cdot 10 - 6 \cdot 40 \cdot 1000 = 0.96 \approx 1.0 \text{ mm}$

$\alpha T \approx 24 \cdot 10-6 1/K$	Coefficient of thermal expansion for aluminium
ΔT = 40 K	Assumed temperature difference of aluminium dependent on the colour and amount of solar radiation
<i>ℓ</i> = 1000 mm	Rod length
$\Delta \ell \approx 1 \text{ mm}$	Longitudinal expansion

further examples:

 $\Delta \ell = 24 \cdot 10^{-6} \cdot 60 \cdot 1000 = 1.44 \approx 1.5 \text{ mm}$ $\Delta \ell = 24 \cdot 10^{-6} \cdot 100 \cdot 1000 = 2.4 \approx 2.5 \text{ mm}$

A rod with a system length of ℓ = 1000 mm should be shortened by 1 mm for a temperature difference of ΔT = 40 °C. A rod of length ℓ = 3000 mm should be shortened by 3 mm.

For $\Delta T=100$ °C (often occurs in roof areas and south-facing facades), a rod of length $\ell=1000$ should be shortened by 2.5 mm.

Longitudinal expan-	Temperature differ-	Rod length ℓ (mm)
sion ∆ℓ (mm)	ence ΔT	
1	40°C	1000
3	40°C	3000
1.5	60°C	1000
4.5	60°C	3000
2.5	100°C	1000
7.5	100°C	3000

Note:

We recommend shortening the pressure profile by ≈ 2.5 mm per ℓ = 1000 mm of length. When doing so, ensure to use the correct length of the outer seal.

When using cover strips in roof area, it is recommended that holes for screwing on the cover strip are created with a diameter of d = 9 mm.

Stainless steel profile

Pressure profiles and bottom sections of cover strips are made from 1.4301 stainless steel for visible screw fittings. The surface conforms to classification 2B according to DIN EN 10088-2.

Cover strips using 1.4401 stainless steel. The surface has a ground finish (grain 220, DIN EN 10088-2). The upper parts of the cover strip are made from 1.4571 stainless steel with ground finish (grain 240, DIN EN 10088-2). To protect the surface, a film has been applied to one side whose edge can be seen on narrow side.

Other items

All system items are produced according to applicable standards.

Maintenance and care

The information sheets WP.01 – WP.05 from the Association of Window and Facade Producers (VFF) must be observed. The address can be found in the address section. Further information can be found in section 9.0 – Cleaning / Maintenance.

Profile design

$\frac{1.2}{2}$

System with direct screw fittings in the central groove

The type of wood chosen depends on the client, architect and processor according to the following considerations:

- Softwood, strength class C24
- Laminated timber, strength class GL24h
- For fireproof glazing, pay attention to the specifications given in the relevant authorisations.


The use of comparable hardwoods is also permitted.

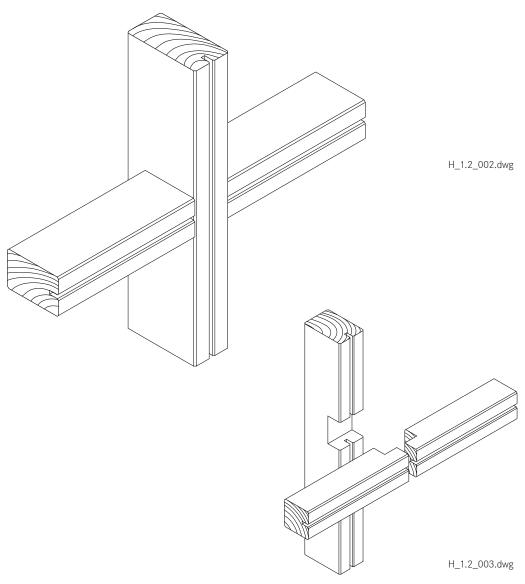
We prescribe the necessary geometry around the seal support and in regard to the screw fittings required for our systems.

Note:

Worked grooves and edges must be free of shavings and imperfections.

When using hardwood cylinders for glass supports GH 5053 and GH 5055, you must not make a groove in the cylinder. The sealing base is removed around the cylinder.

H_1.2_001.dwg

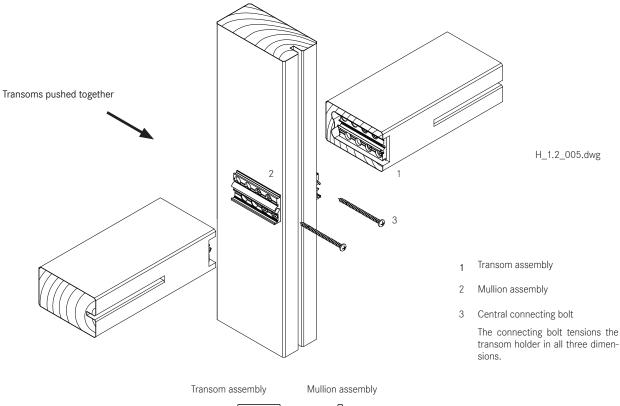


Mullion-transom joint

1.2 3

Principle

- Attachment of the transoms to the mullions must match the static base system of the mullion-transom design selected.
- Load bearing capacity and suitability are to be statically demonstrated on site. In doing so, the design and technical processing experiences of the processor can be considered.
- Designs are to be chosen that can be considered regular joints for the intended purpose and meet the standards of the Eurocode 5 (DIN EN 1995) or are covered by general building approvals.
- The solutions presented by us are purely examples.
 A range of designs are possible depending on the shape of the wood and different jointing options.



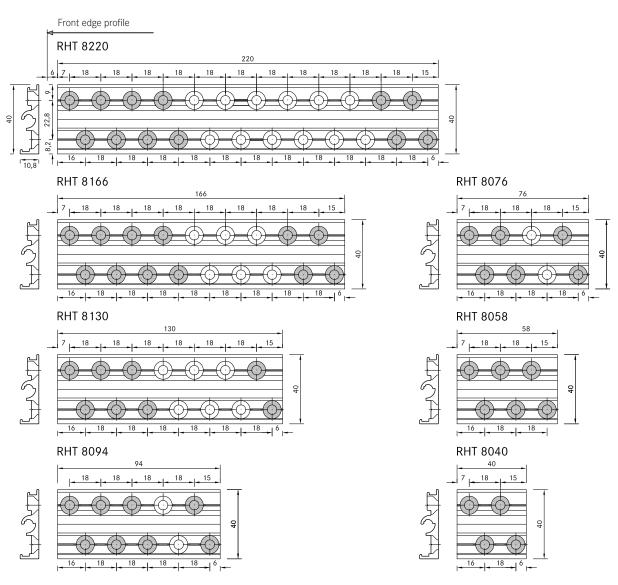
Mullion-transom joint

<u>1.2</u>

RHT transom connector for wood systems

- The RHT links wooden mullion and transom constructions with a visible width of 50-80 mm.
- The two identical connector parts are mounted to mullions and transoms and linked with one another by pushing together the transoms.
- A connecting screw locks the connection in all three dimensions.
- The clamping foot on the transom inner seal must be disengaged in the area of the mullion-transom joint.
- When attaching the clamping strips to the system, take care to place the screws outside of the mullion-transom connection in order to avoid a collision with the RHT connector screw fittings.
- The central wooden groove in the transom should begin approx. 80 mm before the end of the transom
- The glass support should be mounted approx. 100
 mm from the end of the transom to prevent any
 collision between the RHT screws in the transom.

H_1.2_004.dwg

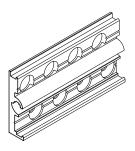

Mullion-transom joint

<u>1.2</u>

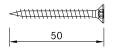
RHT for wood systems - types

- The range comprises 7 RHT types with different lengths and therefore different load-bearing capacities.
- The screw group comprising a larger number of screws (shown in the diagram) is positioned toward the front edge of the mullion and transom (glass side).

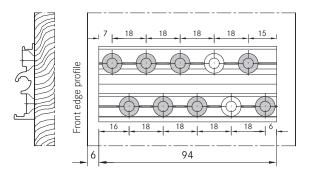
Connector types Standard screw fittings

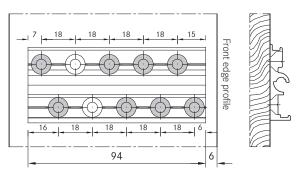

Mullion-transom joint

<u>1.2</u>


Assembly on the mullion

- The front edge of the connector lies 6 mm behind the front edge of the mullion.
- Z 0126 screws in length 5/50 are always used for attaching to horizontal timbers (mullions).
- When using hard woods or when working near the edge of the wood, a hole of 3 mm diameter should be pre-drilled.
- The number of screws varies for standard screw fittings, depending on the connector type. (Refer to the previous page)
- A combination of screws can be used and calculated case-by-case.


Mullion assembly


Screw fittings mullion Z 0126

Left mullion with connector e.g. RHT 8094

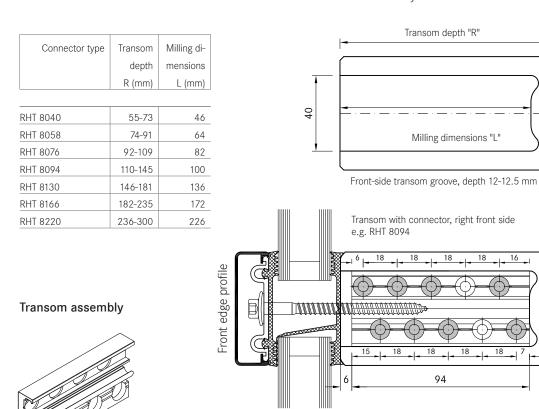
Right mullion with connector e.g. RHT 8094

Mullion-transom joint

<u>1.2</u>

12 - 12,5

40


Assembly on the transom

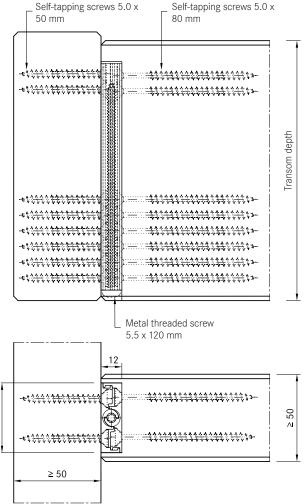
- A recess with 12-12.5 mm depth is milled into the (front of the) transom.
- The milling dimensions are:
 With x length x depth
 40 x (RHT length + 6) x 12-12.5 (mm)
- The milling can be carried out using a standard hand router.
- The front edge of the connector lies 6 mm behind the front edge of the transom.
- Z 0127 screws in length 5/80 are always used for attaching to longitudinal timbers (transoms).
- When using hard woods or when working near the edge of the wood, a hole of 3 mm diameter should be pre-drilled.
- The number of screws varies for standard screw fittings, depending on the connector type. (Refer to the previous page)
- A combination of screws can be used and calculated case-by-case.

Transom with connector, left front

94

side e.g. RHT 8094

Front edge profile


Mullion-transom joint

<u>1.2</u>

Constructing the timber joint

- The transom is pushed in from the inside to the outside.
- Screwing in the greased connecting screw allows the locked mullion-transom joint to be released in all three dimensions if necessary. This tightens the transom evenly to the mullion along the entire depth.

Example: RHT 8130 top and side views

Linked connectors

- If the transom depth is over 300 mm, 2 connectors can be used along the entire length to improve tensioning of the mullion-transom joint.
- The connector type RHT 8220 is always used on the front edge of the profile. Another connector can be fitted on the RHT 8220 as required.
- A peg is inserted and positioned correctly by the into the connecting screw in order to improve tensioning of the second connector.
- The maximum load-bearing capacity of the RHT 8220 applies in regard to resilience.
- By request, a connector longer than 220mm can be produced. The maximum load-bearing capacity of the RHT 8220 is also valid here.

<u>1.2</u> 4

Tips for laying seals

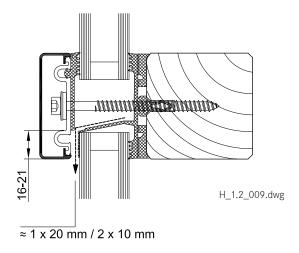
Sealing system principle, general information about glazing seals

The Norden Facade sealing system consists of the outer and inner sealing sections:

- The outer sealing section has the primary function of preventing the ingress of moisture. At the same time, the sealing section provides a flexible support for the glass panes.
- The inner sealing section acts to protect the inner space, water guiding section and elastic glass supports from moisture and vapour.

Both sealing sections must perform this function over a long period of time.

Seals should be adapted at the building site, but can be pre-cut to length in the factory and inserted into the support profiles, i.e. the camping strips, with proper consideration of the assembly instructions for the seals. Always ensure that seals are not bearing any loads once installed and are firmly pressed onto joints. All joints should be sealed as per the following descriptions.


Fire seals

Like all organic materials, elastomers are combustible if they are exposed to high temperatures for a sufficient period in the presence of oxygen. Inorganic substances are added to the seals in order to reduce their combustibility. The proportion of inorganic substances positively influences the flame-retardant properties, but they also make the products harder and reduce their mechanical strength. It is therefore imperative when fitting fire seals to ensure that the structure is absolutely flat and that the sealant joints connect precisely.

Depending on their geometry, it may be necessary to stretch fire seals into a mountable form, i.e. to leave them to settle into their mountable form, once they have been removed from their rolled packaging. Warm temperatures also make the seals more malleable and therefore facilitate installation.

Pressure equalisation and controlled drainage

Pressure equalisation is generally achieved via openings at the base, head and ridge points. Should additional ventilation be required in the area of the transom (e.g. where panes are only supported on 2 sides or where transom length is $\ell \geq 2$ m), then this ventilation should be created by placing holes into the cover strip and/or using notches on the lower sealing lips of the outer seal.

The pressure equalisation openings also serve to extract moisture. The inner sealing section is formed in such a way that when the joints are properly sealed, any moisture that occurs and does not dissipate via the rebate ventilation will drain away downwards. In facades, water is guided via the seal flap into the mullions. There is a choice between using tested sealing systems with between 1 and 3 levels. With inclined glazing with 2 drainage levels, the higher sealing section of the transom overlaps the lower mullion seal. These principles must be consistently implemented down to the lowest point of the glazing so that the water-guiding level of the structure carries moisture to the outside. Film is placed beneath the seals accordingly. It must be ensured that the film will last for a long time.

Tips for laying seals

<u>1.2</u> 4

Inner sealing section

The structure of the inner sealing section is different for **vertical** facades and facades with an inward incline up to 20° as well as **roof glazing**.

Inner sealing for vertical glazing and glazing with an inward incline up to 20°:

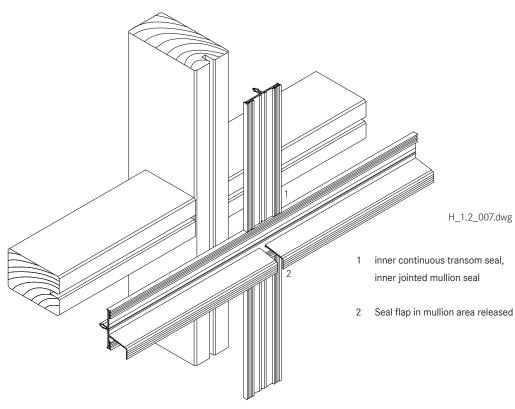
- 5 mm high butt jointed seals with a drainage section for vertical facades (α =0°)
- 10 mm high seals with two drainage sections to safely guide away any moisture or condensation to the outside. These seals are created by overlapping the seal joints in which the higher sealing section of the transom goes underneath the lower level of the mullion. These seals can be used for vertical facades and facades with an incline up to 20°.
- 12 mm high seals follow the same principle, but allow an additional third drainage section for an intermediate mullion.
- The shaped seal flap protects the vulnerable area of the rebate and ensures that moisture is drained away via the vertical or up to 20° inwards inclined mullions.

Inner seals for glazed roofs:

 A special seal geometry for glazed roofs also allows for two-level stepped drainage. The 10 mm high seals are laid with overlapping joints.

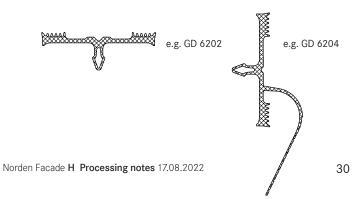
Some basic information for sealing and sticking down Norden Facade seals

- All joints and seal penetrations must be waterproofed with the exception of the Norden Facade screw fittings.
- Gasket joints should always be sealed using Norden Facade sealant, regardless of whether they are butt joints or overlapping.
 (We recommend Norden Facade connecting paste Z 0094. Pay attention to the directions provided by the manufacturer).
- For difficult to seal places we recommend first using a fixing adhesive such as the Norden Facade quick fix-ing glue Z 0055.
- Before gluing, ensure all surfaces are free from moisture, dirt and grease.
- Weather conditions such as snow and rain prevent an effective seal.
- Temperatures below +5 °C are not suitable for fixing seals.
- The hardened connecting paste should not prevent level support of glass.



Seals - Facade

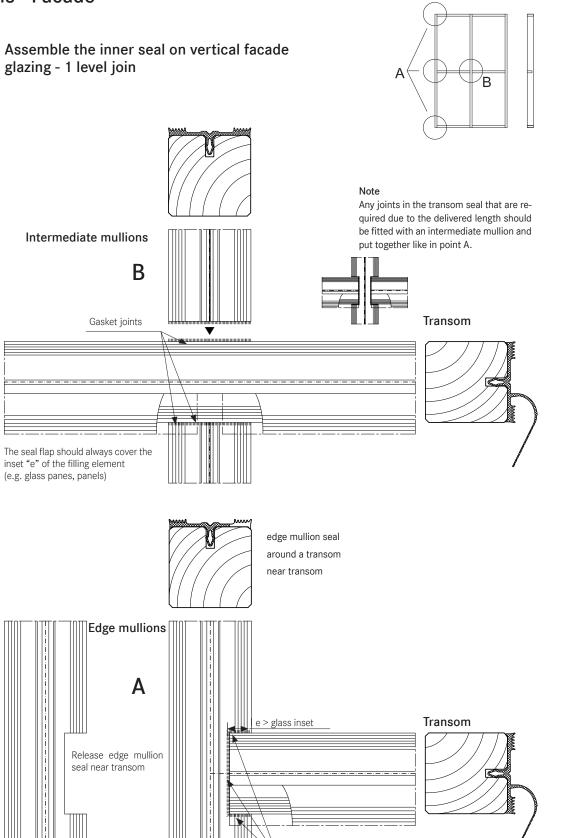
<u>1.2</u> 5


Assemble the inner seal on vertical facade glazing - 1 level join

- The horizontal transom seals are laid continuously across the mullion-transom joints. Ensure here that the clamping feet of the horizontal seal are released around the mullion.
- Mullion seals are butt jointed to the transom seals.
- The clamping foot on the transom seal must be disengaged in the area of the mullion-transom joint if wood connectors types RHT 8040 to RHT 8220 are used.
- The seal flaps should be released to a width of 10 mm to 15 mm at the mullion joint.
- The protruding length of the seal flap should be removed at the perforation once glazing is completed.
- In order to safely drain away moisture from transoms even at the edges of the facade, the inner transom seals must be laid into the released mullion seals. To release and remove the clamping feet we recommend using our release pliers Z 0078 for System 60 and Z 0077 for System 50.
- Ensure all joints are cleanly and solidly sealed. Excess sealant should be removed.

Inner seal mullions

Inner seal transoms

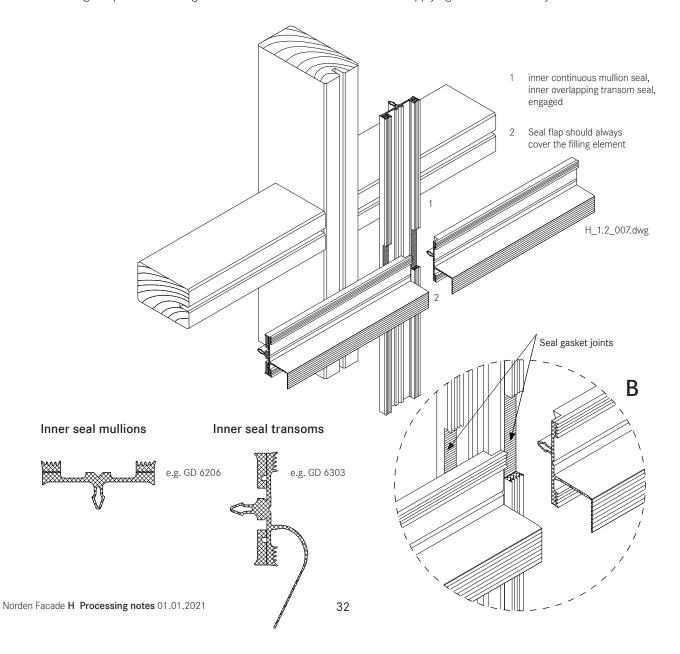


H_1.2_008.dwg

Seals - Facade

1.2 5

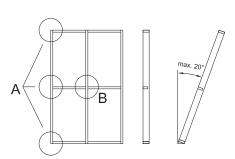
Gasket joints

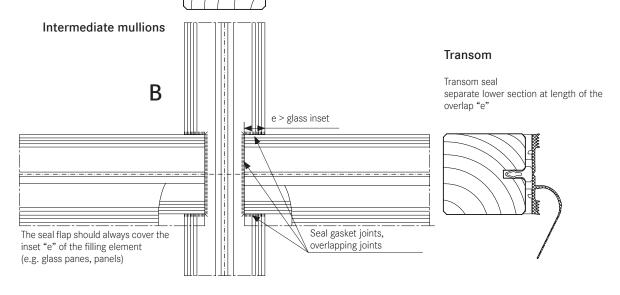

Seals - Facade

<u>1.2</u> 5

Assembly of the inner seal for vertical facade glazing and facade glazing with an incline of up to 20° - 2 overlapping sections

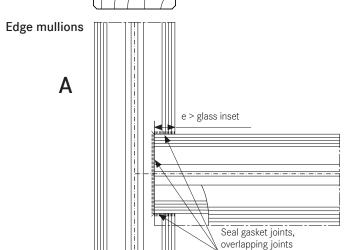
- The 10 mm high seals can be divided across their height to allow a simple overlap at critical transom joints.
- The vertical seals for the mullions (2nd drainage section) are laid continuously.
- The transom seals overlap the mullion seals.
- Moisture and condensation is guided away via the seal flap of the transom seal (1st drainage section) to the main mullion.
- The seal flap must always cover the inset depth of the glass panes and filling element.


- The protruding length of the seal flap should be removed at the perforation once glazing is completed.
- All joints must be sealed. Before laying seals, we recommend completely coating the support surfaces and edges with Norden Facade connection paste.
- Ensure all joints are cleanly and solidly sealed. Excess sealant should be removed. Absolutely no unevenness in the glass support surface must occur from applying sealant too thickly.

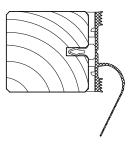


Seals - Facade

Assembly of the inner seal for vertical facade glazing and facade glazing with an incline of up to 20° - 2 overlapping sections



Mullion seals
around a transom upper section
to the width of the transom seal

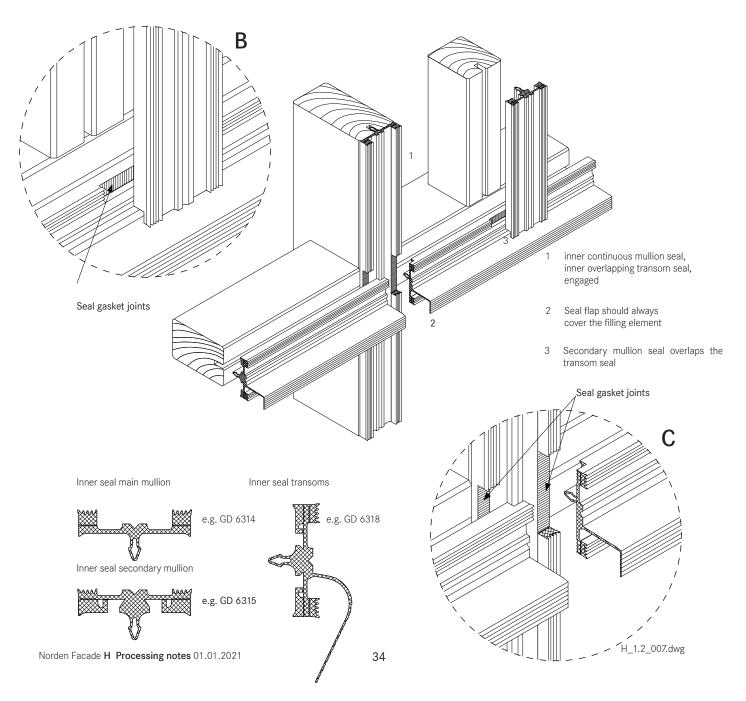

edge mullion seal

around a transom upper section to the width of the transom seal

Transom

Transom seal separate lower section at length of the overlap "e"

H_1.2_008.dwg

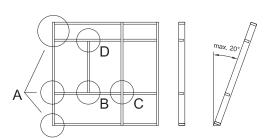

NODDEN FLAC A DEN

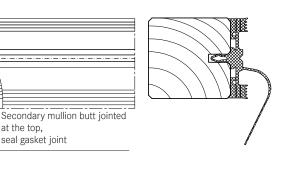
Seals - Facade

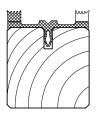
1.2 5

Assembly of the inner seal for vertical facade glazing and facade glazing with an incline of up to 20° - 3 overlapping sections

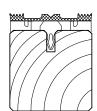
- Optionally, Norden Facade seals with three offset water channels can be used in the facade area which safely drain any moisture or condensation to the outside.
- The 12 mm high seals can be divided across their height to allow a simple overlap at critical secondary mullion/transom joints and/or transom/primary mullion joints.
- The vertical seals for main mullions (3rd drainage section) drainage section) are laid continuously.
- The transom seals overlap the main mullion seals.
- Along a transom, seals must be laid continuously.
- Moisture and condensation is guided away via the seal flap of the transom seal (2nd drainage section) to the main mullion.



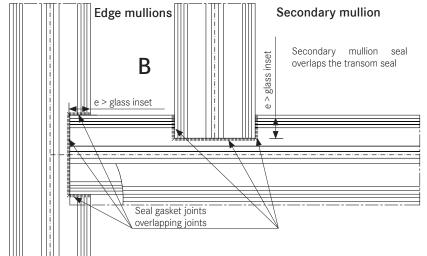

Seals - Facade


Assembly of the inner seal for vertical facade glazing and facade glazing with an incline of up to 20° - 3 overlapping sections

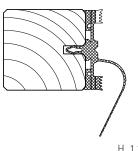
- The seal flap must always cover the inset depth of the glass panes and filling element.
- The protruding length of the seal flap should be removed at the perforation once glazing is complet-
- · Vertical seals on the secondary mullion are butt jointed beneath the upper transom. The seal flap of the upper transom runs continuously in the upper part of the joint.
- Drainage of the secondary mullion (1st drainage section) is achieved by overlapping the seals of the secondary mullion with the seal of the upper transom.


Transom

The seal flap runs


continuously through

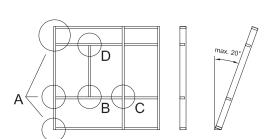
Cut secondary mullion seal below the lower transom section to the length of the overlap

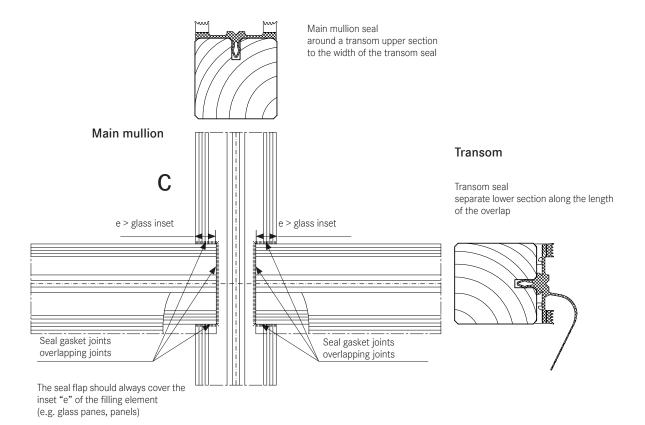

at the top,

seal gasket joint

Transom

Transom seal Connection to the secondary mullion cut the uppermost section to width of the transom seal

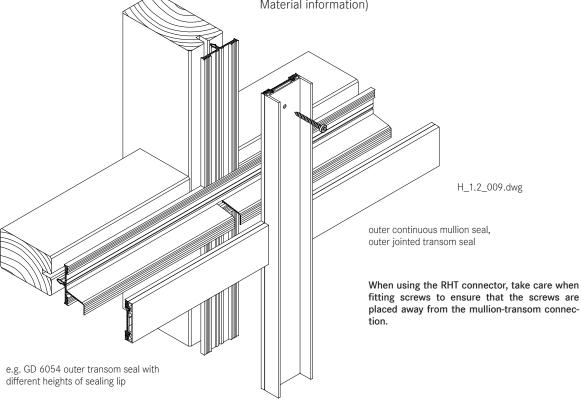

H_1.2_008.dwg



Seals - Facade

Assembly of the inner seal for vertical facade glazing and facade glazing with an incline of up to 20° - 3 overlapping sections

- All joints must be sealed. Before laying seals, we recommend completely coating the support surfaces and edges with Norden Facade connection
- pastere all joints are cleanly and solidly sealed. Excess sealant should be removed. Absolutely no unevenness in the glass support surface must occur from applying sealant too thickly.


Seals - Facade

<u>1.2</u> 5

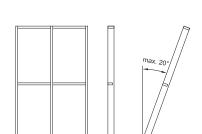
Assembly of the outer seal for vertical glass facades

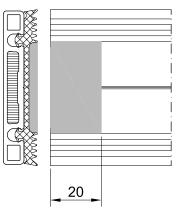
- As well as gently clamping the glass in place, the outer sealing system has the primary task of protecting the rebate against moisture ingress.
- The outer sealing sections must be completely sealed except for the necessary openings for pressure equalisation and condensation dissipation.
- The outer mullion seals are laid continuously and the transom seals are joined.
- Sealant joints are to be laid flat with a slight excess in dimensions. Exact specifications depends on the situation in which the system is used.
- Tightly fitted sealant joints can be implemented without fixing the outer seal of the mullion-transom joint in vertical facades.

- The flag for the inner transom joint in combination with the outer seal creates additional safety.
- The seal flap should be separate at its perforations to match the thickness of the glass in order that this is clamped down and concealed under the outer seal.
- Different heights of sealing lips on the outer seal bridge the height different created by the seal flap in the outer sealing section.
- Differently high, split seals allow a balance between filling elements of different total thickness of up to 6 mm
- When mounting the clamping strips, be aware of aluminium profile expansion (see section 1.2.1 -Material information)

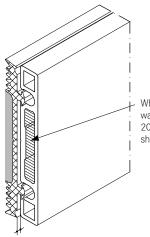
Expansion of aluminium profiles

Rod length ℓ	Temperature difference	Longitudinal expansion
(mm)	ΔΤ	$\Delta \ell$ (mm)
1000	40°C	1
3000	40°C	3
1000	60°C	1.5
3000	60°C	4.5
1000	100°C	2.5
3000	100°C	7.5


Norden Facade H Processing notes



Seals - Facade


Assembly of the outer seal for facade glazing with an inwards incline up to 20°.

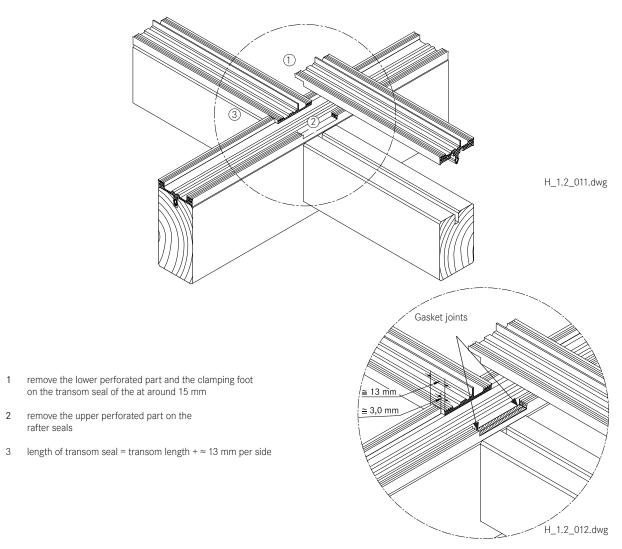
- If the facade is inclined inwards from the vertical (max. permitted incline 20°), the open ends of the outer transom seals must be closed up using Butyl.
- When constructing inwardly inclined facades (up to max. 20°), if flat cover strips are used in the transoms (e.g. DL 5059, DL 6059, DL 5061, DL 6061, DL 5067, DL 6067, DL 5071, DL 6071, DL 6043, DL 6044) and flat pressure and cover profiles (e.g. UL 6005 with OL 6066), then the central hollows at each end must be sealed with silicone.

Seal open ends of the transom seals with Butyl on inwardly inclined facades (up to max. 20°).

H_1.2_009.dwg

When using flat cover strips on inwardly inclined facades (up to max. 20°), the central hollow at each end should be sealed with silicone.

Trim the seal to be slightly larger than required.



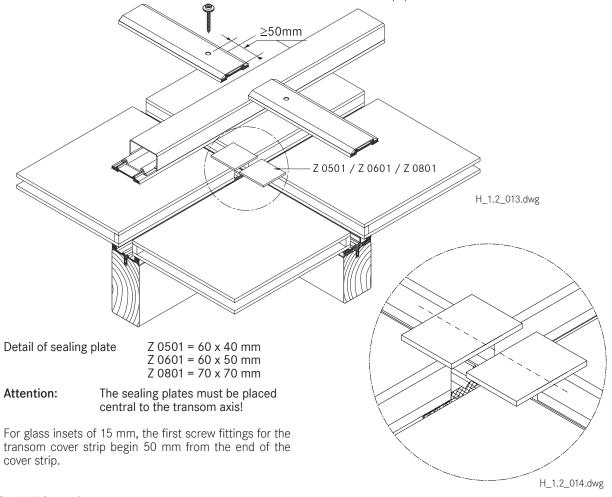
<u>1.2</u>

Assemble the inner seal for roof glazing

- Optionally, Norden Facade seals with offset water chan-nels can be used in the facade area which safely drain any moisture or condensation to the outside.
- The 10 mm high seals can be divided across their height to allow a simple overlap at critical transom joints.
- The transom seals are geometrically shaped so as to create a condensation channel.
- This channel drains from the overlapping transom joint in the rafters.

- Along a transom, seals must be laid continuously.
- All joints must be sealed. Before laying transom seals, we recommend completely coating the support surfaces and edges. Absolutely no unevenness in the glass support surface must occur from applying sealant too thickly.

<u>1.2</u>


Assembly of the outer seal for for glazed roofing

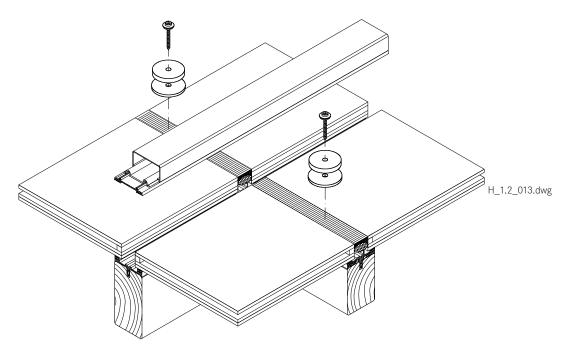
- These are laid in fundamentally the same way as for vertical glazing. Split seals such as GD 1932 are not suitable for transom seals in roofs. Split seals can only be installed in mullions in combination with slab insulation. Each installation situation will differ to some degree and always check how well sealed it is.
- For cross joints we recommend using our selfadhesive stainless steel sealing plates Z0801 for System 80, Z 0601 for System 60 and Z 0501 for System 50. The stainless steel sealing plates are attached to the edge of the glass panes parallel to the mullion axis.
- Butyl tape is not suitable as a sealing tape between the glass and the outer seal.

- The outer mullion seals are laid continuously and the transom seals are joined.
- Sealant joints are to be laid flat with a slight excess in dimensions. Exact specifications depends on the situation in which the system is used.

Note:

- Horizontal clamping strips prevent the free run off of rain water and dirt.
- Cover strips and upper strips with angled edges reduce the build up of water in front of the clamping strip.
- Shorten the clamping strips on the transoms by 5 mm in the area of the transom joins in order to improve drainage of water. Gasket joints, however, are to be laid flat with a slight excess in dimensions. Open ends of transom clamping strips (upper and cover strips) should be sealed.

Norden Facade H Processing notes


Seals - roof

<u>1.2</u>

Assembly of the outer seal for for inclined glazed roofing $\geq 2^{\circ}$.

- These are laid in fundamentally the same way as for vertical glazing. Split seals around the mullions in roofs such as GD 1932 are only suitable when using in combination with slab insulation. Each installation situation will differ to some degree and always check how well sealed it is.
- To ensure free run-off of rain water and dirt on roofs inclined ≥ 2°, we recommend not using clamping strips in the transoms.
- Instead, the rebate spaces should be sealed with all-weather silicone.
- Implementation of the outer sealing section around mullions is done in the same way as conventional roofs with an inclination up to 15°.

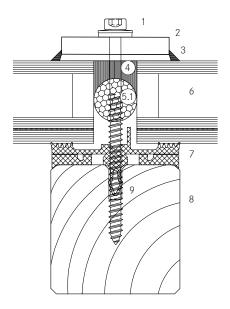
- At the high point or ridge area of the inclined glazing, it is recommended to also install and outer sealing section in the transoms with clamping strips.
- Only certified sealing materials may be used for sealing the transom rebate space.
- Pay attention to all information provided by the manufacturer and the sealing work must be carried out by trained persons. It is recommended that a licensed and certified specialist contractor is hired for this purpose. We further refer you to the DIN 52460 standard and IVD data sheets (Trade Association for Sealants).

Tips for all roof designs:

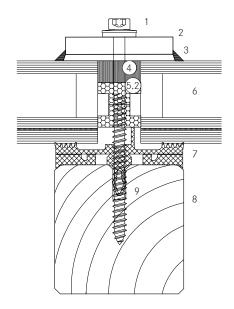
When using aluminium cover strips on roofs, take account of the expansion factor as a result of the high degree of heat absorption when selecting the length to use. Equally, the use of single-piece cover strips should be carefully considered. In this case it is recommended that holes for screwing on the cover strip are created with a diameter of $d=9 \, \text{mm}$ (refer to Section 1.2.1 - Material information).

For wide spans we recommend using concealed screw fittings when selecting the clamping strips (lower + upper strip). This is the preferred option for rafters. Unused holes in the pressure profile must be sealed.

Some roof areas, such as the eaves, see the use of several different materials (glass, silicone, aluminium sheets, ...) each with different expansion coefficients. To avoid the formation of cracks, aluminium sheets should be installed with expansion joints.



<u>1.2</u>


Assembly of the outer seal for for inclined glazed roofing $\geq 2^{\circ}$.

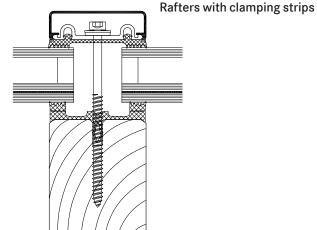
- The compatibility of the materials is particularly important when using all-weather silicone. In this case, the compatibility of the sealant with the edge bonding of the glass and the backfill of the joints. If self-cleaning glass is used, the compatibility must be established in advance.
- Glass sealants and edge bonding must be UV-resistant. The incline of roofs should also be taken into account. Information about UV-resistance can be requested from the manufacturer. Silicone edge bonding generally provides better UV-resistance than polysulfide-based materials. The advantage lies in its high vapour sealing properties which is particularly useful when using more volatile argon fillings.
- Highly elastic, weatherproof and UV-resistant seals meet the widest range of demands for reliable joints.
- If the silicone joint is created without additional mechanical safety devices, ensure that the glass is supported from two sides only. Selective installation of holding clamps can be used to achieve all round support for glass edges.
- The clamps are made from stainless steal with silicone washers and are screwed in the same as pressure strips. The hold-down clamp should be additionally sealed around the perimeter with silicone sealant. The design is based upon the dimensions of the glass as documented in the glass static analysis.

Transom inclined glazing ≥ 2° inclination with all-weather silicone and round section rope seal.

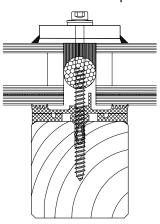
Transom inclined glazing ≥ 2° inclination with all-weather silicone and slab insulation.

- 1 Hold-down clamp
- 2 Silicone washer
- 3 Silicone sealant / seal around the clamp
- 4 All weather silicone seal

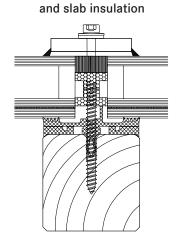
- 5.1 Round section rope seal
- 5.2 Slab insulation
- 6 Glass / filling element
- 7 Inner seal 10 mm transom
- 8 timber profile
- 9 System screw fittings

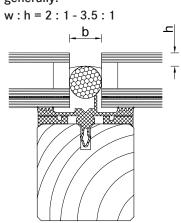


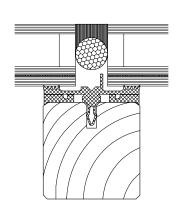
<u>1.2</u>


Assembly of the outer seal for for inclined glazed roofing $\geq 2^{\circ}$.

- The joint width and the joint height for Norden Facade System H are defined as w x h = 20 mm x 10 mm. These measurements should always checked when selecting the sealing material and adapted if neces-sary. Generally: w: h = 2:1-3.5:1
- PE round section seals or Norden Facade slab insulation is suitable as a back fill material.
- Silicone sealant should be applied before laying the mullion seals and cover strips.
- After the specified setting time, the seals and screw fittings can be installed in the areas around mullions.

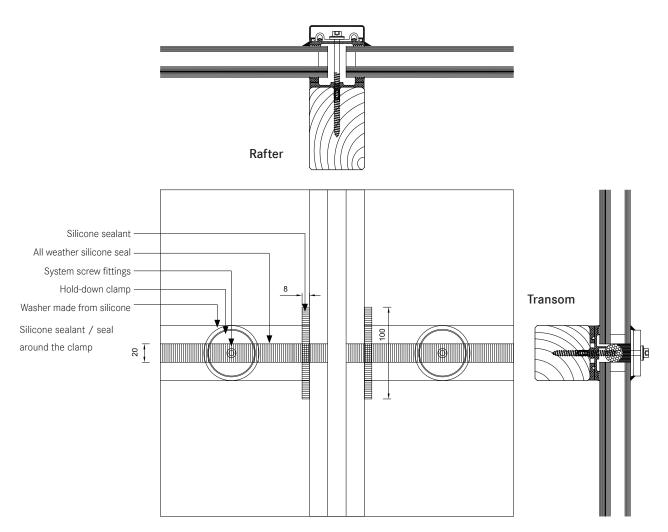

- The mullion-transom joints around the clamps are then sealed.
- Before applying this second layer, the joints around transoms must have completely set.


Transom with clamp,
All weather silicone seal
and round section rope seal


Transom with clamp,
All weather silicone seal

Joint design according to manufacturers specifications! generally:

Transom with all-weather silicone and round section rope seal



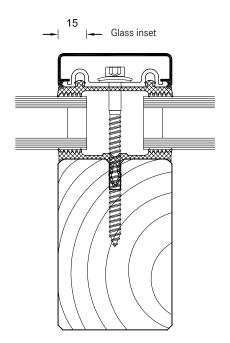
<u>1.2</u>

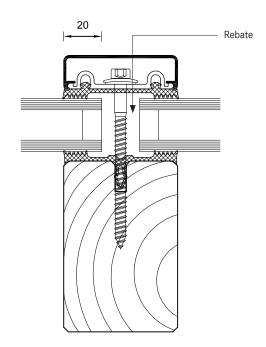
Steps for implementing the seal with silicone

- Test silicone sealant and glass edge bondings and other contact surfaces (e.g. panels) for suitability.
- Clean edge bonding adhesive impurities from the surfaces to which sealant will be applied following manufacturer's directions.
- Fill the joints as per the joint dimensions using only non-water absorbent closed-cell PE profiles (no damage to the edge bonding).
- The remaining space in the glass rebate must be large enough that the pressure is able to equalise and a drainage level is available.
- Clean any impurities from the surfaces to which the sealing material is to be applied and any adjacent surfaces according to manufacturer's directions.

- Be particularly aware of any adjacent metal components. Prime according to manufacturer's directions.
- Seal joints without leaving any cavities or bubbles.
 Mask any adjacent components in advance where necessary.
- Smooth out the filled joints using the manufacturer's smoothing agents and conventional tools with as little water as possible. Remove adhesive tape.
- If two or more reactive sealants are used in combination, the first must completely set before the second is applied.

Norden Facade H Processing notes




Glass inset and glass support

1.2 7

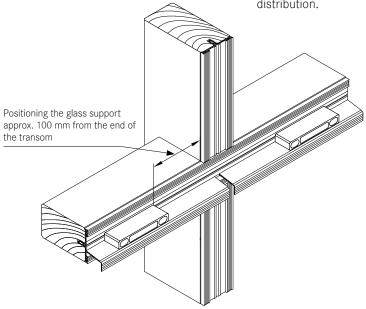
Glass inset

- Glass industry guidelines must be observed.
- The glass inset is generally 15 mm.
- An increase to 20 mm has a beneficial effect on the heat transfer coefficient U_f of the frame structure.
- Special conditions such as fire protection glass must be adhered to; the terms are stated in the general building approval.

Glass support types and choosing the glass support

The Norden Facade H system uses three different types and techniques for attaching glass supports:

- Glass supports GH 5053 and GH 5055 with hanger bolts.
- Glass supports GH 5053 and GH 5055 with hardwood cylinders and bolts.
- Glass supports GH 5201 and GH 5202 that are screwed directly on to the transoms.


The glass supports used are determined by the type of wood, glass construction and glass weight (see section 9). A rigid mullion-transom connection is required, i.e. no twisting of the transom may occur at the connection that would cause further sinking of the glass support.

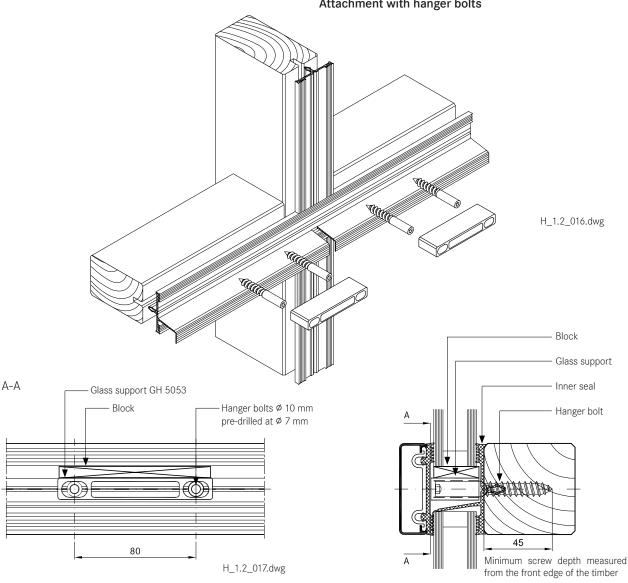
Mounting the glass supports

- Positioning the glass supports and glazing according to glass industry guidelines and guidelines of the Institute for Window Technology.
- The weight of the glass panes is distributed via the glass supports attached to the transoms.
- Glass supports should be attached at a distance of 100 mm from the end of the transom. When doing so, avoid a collision with the cover strip screw fittings at the end of the transom.

Glazing blocks

- Glazing blocks must be compatible with the edge bonding of the insulated glass panes.
- They should be stable under constant pressure and be able to withstand loads, aging and temperature changes.
- It is important that the blocks ensure circumferential pressure equalisation and that drainage of condensation is not obstructed. Also they must allow the glass edges to be offset and small design tolerances to be accommodated.
- If the length of the glass support is more than 100 mm, blocks should be placed along the entire length of the glass support to ensure equal load distribution.

H_1.2_016.dwg

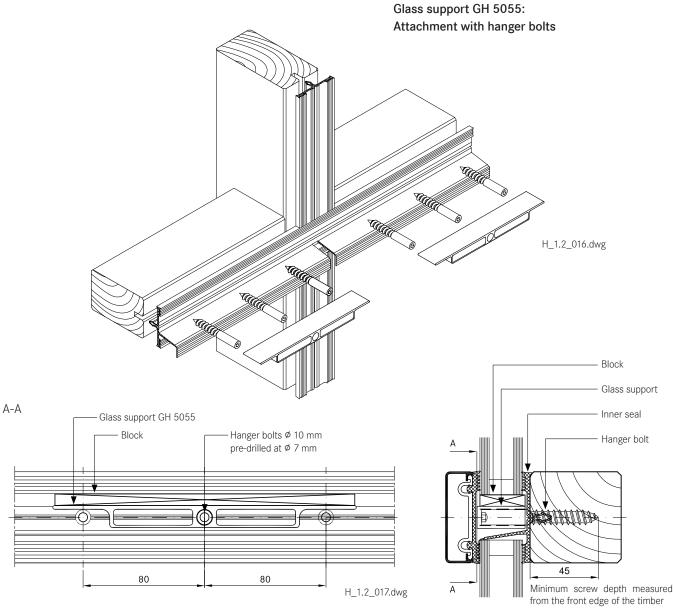


1.2 7

Glass support GH 5053 with hanger bolts

- The certified system components consist of the glass support GH 5053 and 2 hanger bolts Ø 10 mm with a 45 mm wood thread and a shaft of a different length.
- The hanger bolts are screwed directly into the timber at intervals of 80 mm. A Ø 7 mm hole needs to be pre-drilled for this purpose.
- Screw fittings should be vertical to the transom axis
- The depth for hanger bolts is at least 45 mm measured from the front edge of the timber.
- For glass support GH 5053, the required depths are delivered corresponding to the thickness of the glass and placed onto the hanger bolts.
- Blocks must be placed under the glass panes along the entire length of the glass supports.
- Details of the approved pane weights, geometries and classification of system components are provided in section 9.

Glass support GH 5053: Attachment with hanger bolts



1.2 7

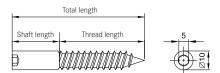
Glass support GH 5055 with hanger bolts

- Based on the test results for the system component GH 5053, a load bearing model was designed and the suitability of the GH 5055 glass support calculated.
- Installation is done the same way as GH 5053, but using three screws spaced 80 mm apart.
- Details of the approved pane weights, geometries and classification of system components are provided in section 9.

<u>1.2</u>

Classification of system components

Table 1:Vertical glazing | System 50, 60, 80 | Hanger bolts


Row	Total class thickness to (mm)	Hanger bolts ²⁾			Glass supports	1)	
	Total glass thickness t _{Glass} (mm) for vertical glazing		Inner seal height		GH 5053	GH 5055	Depth (mm)
		5 mm	10 mm	12 mm			
1	4, 5, 6, 7	Z 0371 ³⁾	Z 0371 ⁴⁾	Z 0371 ⁵⁾	GH 0081	Section	9
2	8, 9	Z 0371 3)	Z 0371 ⁴⁾	Z 0371 ⁵⁾	Section	Section	12
3	10, 11	Z 0371 ³⁾	Z 0371 ⁴⁾	Z 0371 ⁵⁾	Section	Section	14
4	12, 13	Z 0371 ³⁾	Z 0371 ⁴⁾	Z 0371 ⁵⁾	Section	Section	16
5	14, 15	Z 0371 3)	Z 0371 ⁴⁾	Z 0371	Section	Section	18
6	16, 17	Z 0371 ³⁾	Z 0371	Z 0371	Section	Section	20
7	18, 19, 20	Z 0371	Z 0371	Z 0371	GH 0082	Section	22
8	22, 23	Z 0371	Z 0371	Z 0372	GH 0083	GH 0851	26
9	24, 25	Z 0371	Z 0372	Z 0372	GH 0084	GH 0852	28
10	26, 27	Z 0371	Z 0372	Z 0372	GH 0085	GH 0853	30
11	28, 29, 30	Z 0372	Z 0372	Z 0372	GH 0886	GH 0854	32
12	31, 32, 33	Z 0372	Z 0372	Z 0372	GH 0887	GH 0855	35
13	34, 35, 36	Z 0372	Z 0372	Z 0373	GH 0888	GH 0856	38
14	37, 38, 39	Z 0372	Z 0373	Z 0373	GH 0889	GH 0857	41
15	40, 41, 42	Z 0372	Z 0373	Z 0373	GH 0890	GH 0858	44
16	43, 44, 45	Z 0373	Z 0373	Z 0373	GH 0891	GH 0859	47
17	46, 47, 48	Z 0373	Z 0373	Z 0373	GH 0892	GH 0860	50
18	49, 50, 51	Z 0373	Z 0373	Z 0373	GH 0893	GH 0861	53
19	52, 53, 54	Z 0373	Z 0373	=	GH 0894	GH 0862	56
20	55, 56, 57	Z 0373	-	-	Section	Section	59
21	58, 59, 60	Z 0373	-	=	Section	Section	62
22	61, 62, 63	Z 0373	-	-	Section	Section	65
23	64	Z 0373		-	Section	Section	68

¹⁾ Cut from GH 5053 or GH 5055.

For glasses $t_{\text{Cias}} \le 20$ mm, observe the permissible visible shaft length from the front edge of the wood! If necessary, adjust the visible shaft length over the screw-in depth:

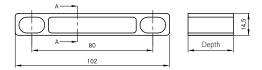
- 3) Permissible visible shaft length from the front edge of the wood = glass thickness \mathbf{t}_{Glas} (mm) + 3 mm
- 4) Permissible visible shaft length from the front edge of the wood = glass thickness t_{Glas} (mm) + 7 mm
- 5) Permissible visible shaft length from the front edge of the wood = glass thickness t_{Glas} (mm) + 9 mm

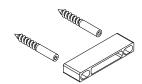
Hanger bolts

Item	Total length (mm)	Shaft length (mm)	Thread length (mm)
Z 0371	70	25	45
Z 0372	77	32	45
Z 0373	90	45	45

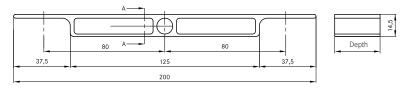
²⁾ Generally: The screw-in depth (ET) for hanger bolts = 45 mm thread length (GL) measured from the front edge of the timber.

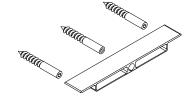
<u>1.2</u>


Classification of system components


Table 2: Inclined glazing | System 50, 60, 80 | Hanger bolts

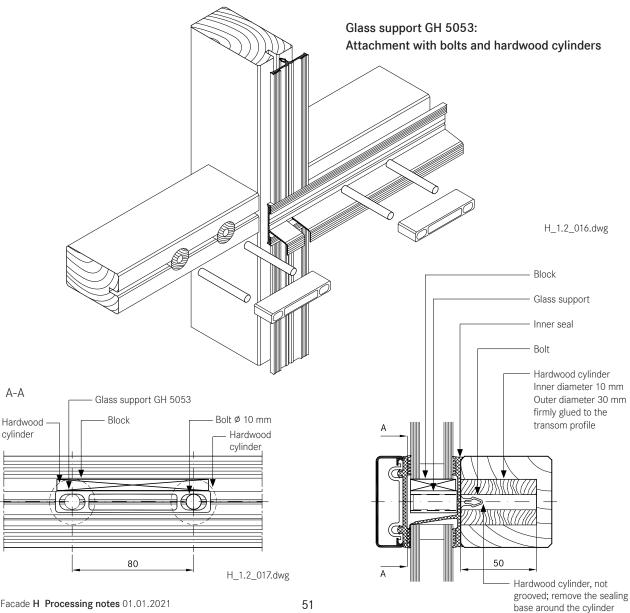
Row	Total glass thickness t _{Glass} (mm) for inclined glazing ¹⁾	Hanger bolts ²⁾	Glass supports 3)		
			GH 5053	GH 5055	Depth (mm)
1	16, 17, 18	Z 0371	GH 0081	Section	9
2	19, 20	Z 0371	Section	Section	12
3	21, 22	Z 0372	Section	Section	14
4	23, 24	Z 0372	Section	Section	16
5	25, 26	Z 0372	Section	Section	18
6	27, 28	Z 0372	Section	Section	20
7	29, 30	Z 0372	Section	Section	22
8	31, 32	Z 0372	GH 0082	Section	24
9	33, 34	Z 0372	GH 0083	GH 0851	26
10	35, 36	Z 0373	GH 0084	GH 0852	28
11	37, 38	Z 0373	GH 0085	GH 0853	30
12	39, 40, 41	Z 0373	GH 0886	GH 0854	32
13	42, 43, 44	Z 0373	GH 0887	GH 0855	35
14	45, 46, 47	Z 0373	GH 0888	GH 0856	38
15	48, 49, 50	Z 0373	GH 0889	GH 0857	41
16	51, 52, 53	Z 0373	GH 0890	GH 0858	44
17	54	Z 0373	GH 0891	GH 0859	47


¹⁾ Accounting for a 10 mm inner seal.


Glass support GH 5053

Glass support GH 5055

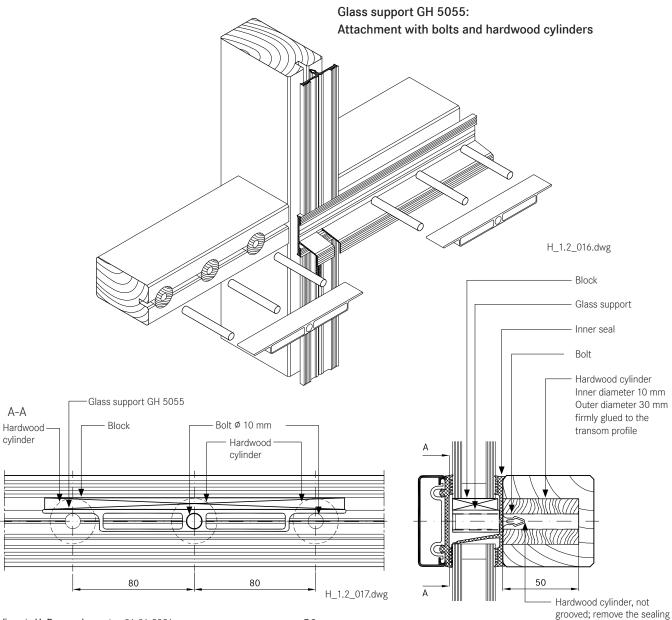
TI-H_9.2_005.dwg


²⁾ The depth for hanger bolts = 45 mm thread length measured from the front edge of the timber.

³⁾ Cut from GH 5053 or GH 5055.

Glass support GH 5053 and GH 5055 with pins and hardwood cylinders

- Certified system components consist of glass support GH 5053 and GH 5055 with pins and hardwood cylinders.
- Depending on the width of supports, 2 or 3 bolts with a diameter of 10 mm are needed.
- The bolt length should be adapted to the thickness of the glass.
- To anchor the bolts in place, 50 mm wooden cylinders with an outer diameter of 30 mm and an axial core of Ø 10 mm are solidly glued into the timber.
- Additionally, holes with a depth of 50 mm and Ø of 30 mm are to be drilled into the transom profile vertical to the transom axis with 80 mm spacing.
- The glue or adhesive used must be suitable and must not swell.
- The bolts should be hammered in along the entire cylinder depth of 50 mm.
- For glass supports GH 5053 and GH 5055, the required depths are delivered corresponding to the thickness of the glass and placed onto the hanger bolts.



<u>1.2</u>

Glass support GH 5053 and GH 5055 with pins and hardwood cylinders

- The central groove in the Norden Facade H System must not be milled into the wooden cylinder.
- When fitting the seals, the sealing base must therefore be removed around the cylinder.
- Blocks must be placed under the glass panes along the entire length of the glass supports.
- Details of the approved pane weights, geometries and classification of system components are provided in section 9.

1.2 7

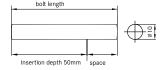
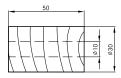

Classification of system components

Table 3:Vertical glazing | System 50, 60, 80 | Hardwood cylinders & bolts

Row				Bolt			Class	1)
	Total glass thickness t_{Glass} (mm)	Hardwood cylinder		Boit		'	Glass supports	.,
	for vertical glazing	Inner seal height		ht	GH 5053	GH 5055	Donth (mm)	
			5 mm	10 mm	12 mm	GH 5055	GH 3033	Depth (mm)
1	8, 9	Z 0073	-	-	Z 0047	Section	Section	12
2	10, 11	Z 0073	-	Z 0047	Z 0047	Section	Section	14
3	12, 13	Z 0073	-	Z 0047	Z 0047	Section	Section	16
4	14, 15	Z 0073	Z 0047	Z 0047	Z 0047	Section	Section	18
5	16, 17	Z 0073	Z 0047	Z 0047	Z 0048	Section	Section	20
6	18, 19	Z 0073	Z 0047	Z 0048	Z 0048	Section	Section	22
7	20, 21	Z 0073	Z 0047	Z 0048	Z 0048	GH 0082	Section	24
8	22, 23	Z 0073	Z 0047	Z 0048	Z 0048	GH 0083	GH 0851	26
9	24, 25	Z 0073	Z 0048	Z 0048	Z 0048	GH 0084	GH 0852	28
10	26, 27	Z 0073	Z 0048	Z 0048	Z 0048	GH 0085	GH 0853	30
11	28, 29, 30	Z 0073	Z 0048	Z 0048	Z 0049	GH 0886	GH 0854	32
12	31, 32, 33	Z 0073	Z 0048	Z 0049	Z 0049	GH 0887	GH 0855	35
13	34, 35, 36	Z 0073	Z 0048	Z 0049	Z 0049	GH 0888	GH 0856	38
14	37, 38, 39	Z 0073	Z 0049	Z 0049	Z 0049	GH 0889	GH 0857	41
15	40, 41, 42	Z 0073	Z 0049	Z 0049	Z 0051	GH 0890	GH 0858	44
16	43, 44, 45	Z 0073	Z 0049	Z 0051	Z 0051	GH 0891	GH 0859	47
17	46, 47, 48	Z 0073	Z 0049	Z 0051	Z 0051	GH 0892	GH 0860	50
18	49, 50, 51	Z 0073	Z 0051	Z 0051	Z 0051	GH 0893	GH 0861	53
19	52, 53, 54	Z 0073	Z 0051	Z 0051	-	GH 0894	GH 0862	56
20	55, 56, 57	Z 0073	Z 0051	-	-	Section	Section	59
21	58, 59, 60	Z 0073	Z 0051	-	-	Section	Section	62
22	61, 62, 63	Z 0073	Z 0051	-	-	Section	Section	65
23	64	Z 0073	Z 0051	-	-	Section	Section	68


¹⁾ Cut from GH 5053 or GH 5055.

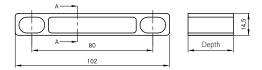
Bolt

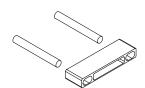
Item	Bolt length (mm)
Z 0047	70
Z 0048	80
Z 0049	90
Z 0051	100

Hardwood cylinder Z 0073

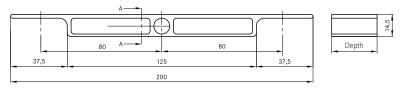
TI-H_9.2_005.dwg

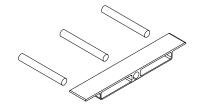
1.2 7


Classification of system components


Table 4: Inclined glazing | System 50, 60, 80 | Hardwood cylinders & bolts

Row	Total glass thickness t _{Glass} (mm) for inclined glazing ¹⁾	Hardwood Bolt			Glass supports 2)	
				GH 5053	GH 5055	Depth (mm)
1	20, 21, 22	Z 0073	Z 0048	Section	Section	14
2	23, 24	Z 0073	Z 0048	Section	Section	16
3	25, 26	Z 0073	Z 0048	Section	Section	18
4	27, 28	Z 0073	Z 0048	Section	Section	20
5	29, 30	Z 0073	Z 0049	Section	Section	22
6	31, 32	Z 0073	Z 0049	GH 0082	Section	24
7	33, 34	Z 0073	Z 0049	GH 0083	GH 0851	26
8	35, 36	Z 0073	Z 0049	GH 0084	GH 0852	28
9	37, 38	Z 0073	Z 0049	GH 0085	GH 0853	30
10	39, 40, 41	Z 0073	Z 0049	GH 0886	GH 0854	32
11	42, 43, 44	Z 0073	Z 0051	GH 0887	GH 0855	35
12	45, 46, 47	Z 0073	Z 0051	GH 0888	GH 0856	38
13	48, 49, 50	Z 0073	Z 0051	GH 0889	GH 0857	41
14	51, 52, 53	Z 0073	Z 0051	GH 0890	GH 0858	44
15	54	Z 0073	Z 0051	GH 0891	GH 0859	47

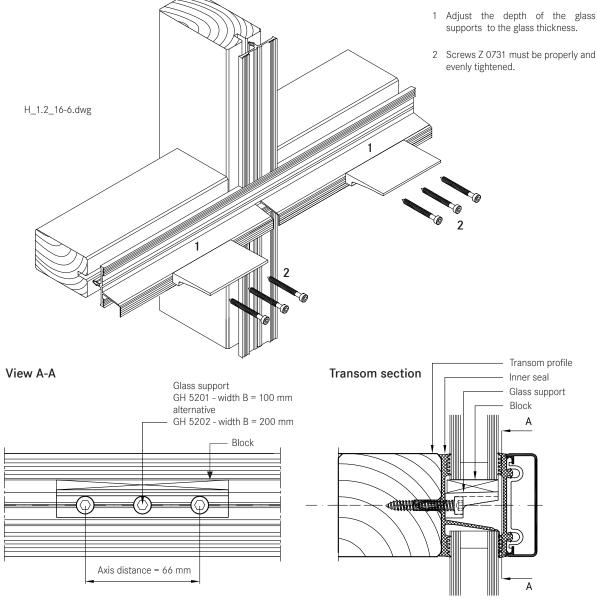

¹⁾ Accounting for a 10 mm inner seal.


Glass support GH 5053

Glass support GH 5055

TI-H_9.2_005.dwg

²⁾ Cut from GH 5053 or GH 5055.



1.2 7

Glass inset and glass support

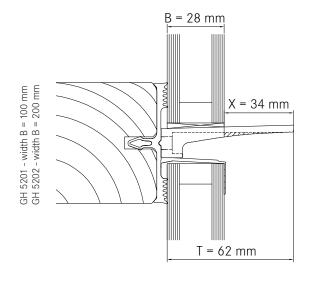
Glass support GH 5201 and GH 5202 - bolted glass support

- The tested elements are composed of the glass supports GH 5201 and GH 5202 and their screws Z 0731 with a length of 90 mm used to make the corresponding screw connection.
- The glass supports differ in terms of their support width. Depending on the glass support 3 or 6 Norden Facade system screws are necessary.
- The bottom part of the glass support is fixed directly into the transom. For this, pre-drill the timber \$97 mm with a distance of 33 mm.
- The glass supports are only suitable for 5 mm inner seals.
- The usable depth of the glass supports is 62 mm and needs to be adjusted according to the glass thickness.
- Blocks must be placed under the glass panes along the entire length of the glass supports.

1.2 7

Section of the glass support

Permissible glass loads are stated in Section 9. Depending on the thickness of the glass, the depth of the glass support must be shortened by "X".


T = depth of the glass support 62 mm
B = thickness of glass panel
$$X = T - B$$

Example:

Depth of glass support
$$T = 62 \text{ mm}$$

Glass panel 6 / 16 / 6

 $B = 28 \text{ mm}$
 $X = 62 - 28$
 $X = 34 \text{ mm}$

H_1.2_016-7.pdf

Norden Facade H Processing notes

Screw fittings

1.2 8

Fastenings

- The fastenings for the Norden Facade H system allow fill-ing elements to be easily secured.
- The clamping strips are connected to the wooden profile using Norden Facade system screws.
 Stainless steel 1.4301 DIN EN 10088 is the material used to produce screws for the Norden Facade system.
- Depending on the type of screw fittings selected, special 4 mm vulcanised EPDM washers are available
- Screws in suitable lengths are available for all common glass thicknesses. The screw length is determined from a table.
- The distance for screw fittings is variable. The maximum distance is a = 250 mm.
- The distance from the edge for the first screw fitting should generally be in the region of 30 mm ≤ a ≤ 80 mm. The placement of the glass supports and the choice of mullion-transom connection should also be taken into account.
- The clamp connection is exclusively exposed to tensile forces. The clamping strips are connected to the wooden profile using Norden Facade system screws. To determine the stress limit (maximum tensile force) and permitted tensile forces for the connection, the conditions in the relevant gener-al building approval and the Eurocode 5 (DIN EN 1995-1) series of standards shall apply.
- Screw fittings are applied using a conventional electric screwdriver with depth stop. This guarantees uniform application of pressure. The depth setting should be chosen so that a sealing washer compression of 1.5 - 1.8 mm is achieved.
- An electric screwdriver with adjustable torque can be used as an alternative. The required torque is approx. 5 Nm. The required torque is influenced by the relatively large scatter when dealing with wood and the variable influence of friction due to different drilling depths. It is therefore advisable to determine the setting on a test piece and to check compression of the sealing washer.

Concealed screw fittings

Assembly is facilitated by selecting pre-drilled pressure strips (UL 5009-L, UL 6009-L and UL 8009-L, slot 7 x 10 mm, a = 125 mm) with clippable upper strips. The remaining pressure strips should be provided with a round hold of d = 8 mm. The functionality of the clip procedure can be checked after the first upper strip has been pushed against the pressure profile.

Note:

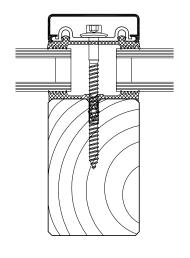
When using aluminium cover strips on roofs, take account of the expansion factor as a result of the high degree of heat absorption when selecting the length to use. In this case it is recommended that holes for screwing on the clamping strip are created with a diameter of d = 9 mm. Equally, the use of single-piece cover strips should be carefully considered.

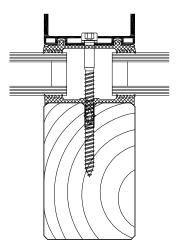
Visible screw fittings

 Cover strips should be drilling with a round hole of d = 8 mm.

Note:

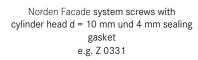
(see Note on covered screw fittings)


Visible recessed screw fittings


 When creating visible recessed screw fittings a stepped bore is required. The lower part of the cover strip should be drilled with a d = 7 mm diameter. The upper part of the cover strip needs a d = 11 mm diameter for the screw head. It is recommended to install a washer (PA washer, e.g. Z 0033) with all screw fittings.

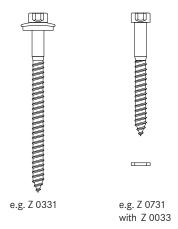
Screw fittings 1.2

Fastenings

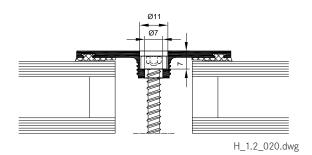


H_1.2_018.dwg

Concealed screw fittings


Norden Facade system screws with cylinder head d = 10 mm und 4 mm sealing gasket e.g. Z 0331

Visible screw fittings


Visible recessed screw fittings

Norden Facade system screws with cylinder head d = 10 mm with additional PA washer, e.g. Z 731 with Z 33

H_1.2_019.dwg

Calculating the screw length for DL 5073 / DL 6073

Attention!

The calculation to determine screw lengths for the the calculation to determine screw lengths is:

Glass thickness - 3 mm + inner seal (5, 10, i.e. 12 mm) + 16 mm +

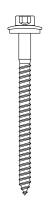

e = statically required screw-in depth

Screw fittings

1.2

Calculating the screw length

Representation and item numbers are examples for System 60. System width 50 are analogous.


H_1.2_021.dwg

Screw fittings

1.2 8

Wood screws for Norden Facade H

Cylinder head screw Ø 10 mm with hex socket | with sealing gasket

Z0327	cylinder head screw	6.5 x 70 mm
Z0329	cylinder head screw	6.5 x 80 mm
Z0331	cylinder head screw	6.5 x 90 mm
Z0333	cylinder head screw	6.5 x 100 mm
Z0335	cylinder head screw	6.5 x 110 mm
Z0337	cylinder head screw	6.5 x 120 mm
Z0339	cylinder head screw	6.5 x 130 mm

Cylinder head screw \emptyset 10 mm with hex socket | without sealing gasket

Z0033	PA washer ∅	10 x 1.5 mm
Z0737	cylinder head screw	6.5 x 120 mm
Z0735	cylinder head screw	6.5 x 110 mm
Z0733	cylinder head screw	6.5 x 100 mm
Z0731	cylinder head screw	6.5 x 90 mm
Z0729	cylinder head screw	6.5 x 80 mm
Z0727	cylinder head screw	6.5 x 70 mm

H_1.2_019.dwg

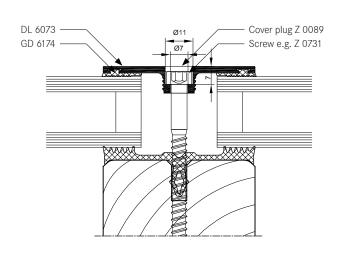
Flat cover strip DL 5073 / DL 6073

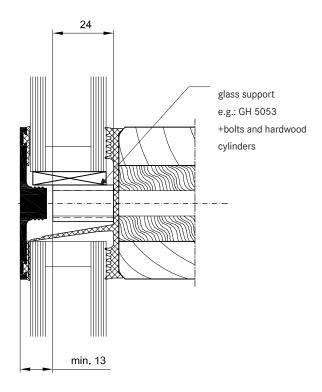
Tips for laying the cover strip DL 5073 / DL 6073

We assume that this cover strip will be used with glass panes that are supported on two sides and the recessed screw head is concealed. In this case, a cylinder head screw with inner hex is to be used e.g. Z 731. When covering with a 2 mm cover plug Z 89, a bore depth of 7 mm is calculated.

Depending on the precision of the bore, it should be decided on case by case basis if any slight changes to this depth are necessary. The cover plug Z 0089 does not need to be glued in place, but may be levelled using levelling compound.

Coating the cover strip


Profile production (aluminium extrusion moulding) with different mass distribution is extremely difficult. Lengthwise shadow formation may result. Resulting actions are to be taken with the agreement of the coater.


Intersections

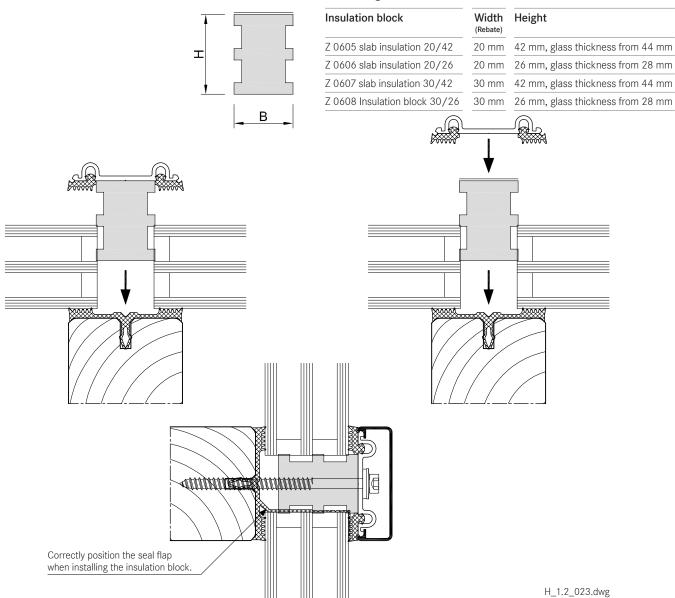
Due to the special shape of the strip (the material extends into the rebate), there is no closed sealing section available at intersections. We therefore recommend placing particular attention to ensure tightness of the joints and fill will Norden Facade connecting paste Z 0094.

Glass supports/blocking

Special attention should be given to dimensional proportions. To support the outer pane, a sufficiently large glazing block must be installed that can carry the load to safely ensure the glass load is distributed effectively.

H_1.2_022.dwg

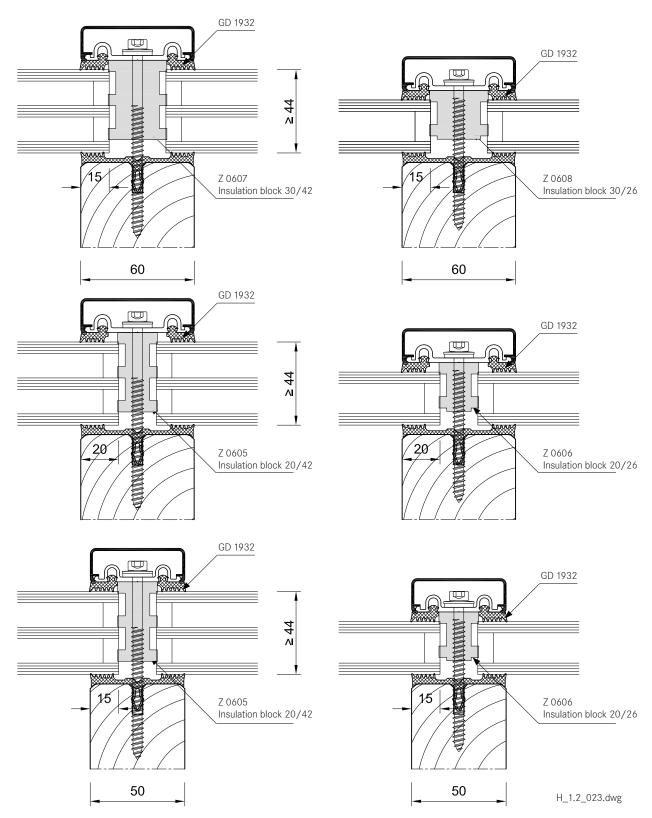
Slab insulation


1.2 10

Use of slab insulation

- Using insulation blacks significantly reduces heat dissipation.
- The highly effective slab insulation has a permanently adhesive HOT-MELT.
- Depending on the situation where they are used, insulation blocks can be directly applied to the cover strip/pressure profile or placed into the rebate over the screw fittings and pushed into position with the cover strip/pressure profile.

Note:


- The use of slab insulation with cover strips DL 5073 / DL 6073 should be tested for each individual situation.
- 2-piece outer seals are always used with slab insulation blocks:
- With system width 80 mm and a 40 mm rebate 2 x 20 mm wide slab insulation blocks can be combined (40 mm wide insulation blocks available upon request).
- for a glass inset of 15 mm, outer seal GD 1932
- for a glass inset of 20 mm, outer seal GD 1932

Slab insulation 1.2

Examples:

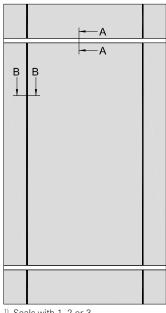
Pane support variants

<u>1.3</u>

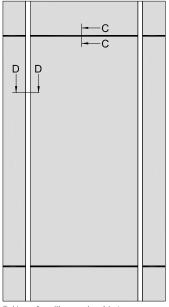
Special design

Glass structures that partially refrain from using visible cover strips are considered special designs.

These designs do not conform to the intended uses of the system. No guarantees are made for e.g. quality of seals, durability and structural stability. Responsibility here lies entirely with the company implementing the design.


Based on our experience we recommend paying close attention to the points made on the following pages during planning and implementation.

Mullion-transom structure, 2-sided cover strip


Section B-B

Mullion-transom structure with transom cover strips 1)

Seals with 1, 2 or 3 sections are possible

Mullion-transom structure with mullion cover strips ²⁾

Use of mullion seals with 1 section in mullions and transoms

Section D-D

H_1.3_001.dwg

Pane support variants

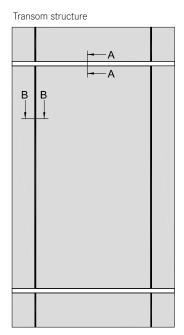
Vapour seal:

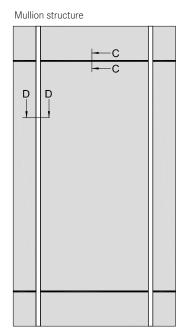
When using this type of structure, it is important to be aware that any loss of contact pressure can affect the room-side permeability. There is an increased risk of condensation build up in the rebate.

vertical clamping strips:

The glass supports should be placed to below the outer pane and sealed with it.

horizontal clamping strips:


Ventilation and condensation drainage is achieved via a recess in the lower sealing lip in the centre of the outer seal or at one third intervals.


Transom structure, mullion structure 2-sided cover strip

Section A-A

H_1.3_001.dwg

Pane support variants

1.3 1

Requirements for special designs

1 Vapour seal

The room-side level of glazing must have the best possible vapour seal. In this regard, the vapour diffusion properties of the silicone sealant to be used should be tested. Ensure that there are no permeable areas around concave cross joints.

2 Rebate ventilation, pressure equalisation and condensation drainage

Systems with partially sealed rebate represent a limitation to rebate ventilation. Check on a case-by-case basis that no damage will be caused by standing condensation. It is especially critical that designs with sealed vertical joints are evaluated. To allow ventilation of the horizontal rebate we recommend installing a suitable vertical ventilation space. Alternatively, ventilation can be achieved using the outer joints.

3 Weatherproofing

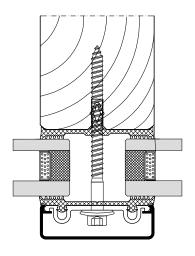
The outward facing seals must be watertight. In cross joints, it is especially important to ensure a firm join between the Norden Facadeprofile seal and the silicone joints. We recommend sealing up to the outer edge of the glass before mounting the cover strips.

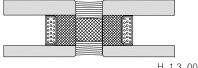
We would like to once again emphasise that our profile seals will not make a permanent bond with commonly used silicone sealants. A seal can only be created at contact points through permanent application of pressure.

4 Mechanical strength screw fittings

Ensure screw fittings are sufficiently planned for. Special attention should be given to the effects of wind suction and the reduced support.

5 Glass weight distribution

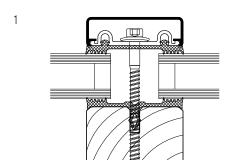

Mechanical distribution of the weight of the glass panes through the structure must be ensured. System glass supports can be used for existing horizontal transoms. Designs using "only" mullions require special glass supports which carry the weight of the glass directly into the mullions.

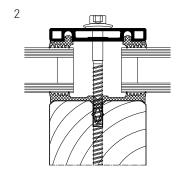

6 Glass sizing

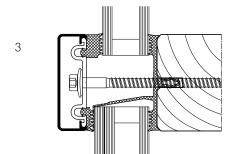
Attention should be given to the reduced support of panes when dimensioning the glass. For example, only the vertical or horizontal cover strips are effective in the event of wind suction stresses or stress on the fall protection.

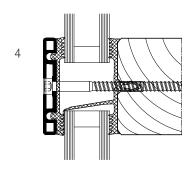
7 Material compatibility

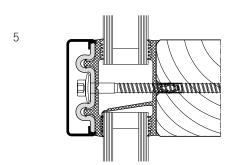
Compatibility of the silicone sealants with our profile sealants and the edge bonding of the glass must be ensured. We recommend the exclusive use of tested silicone sealants from the whole-glass facades sector. Approval is usually given by the silicone manufacturer.

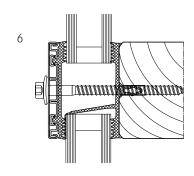

H_1.3_001.dwg

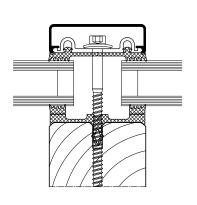


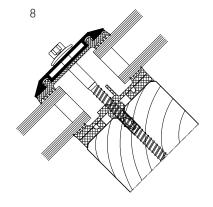

System cross sections


1.3 2


Examples:





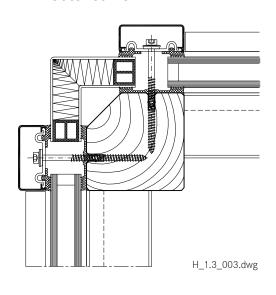


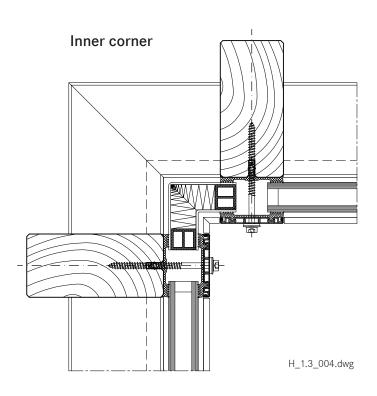
- Vertical glazing, mullions concealed screw fittings
- Vertical glazing, mullions visible screw fittings
- 3 Vertical glazing, transoms divided outer seal for height compensation
- 4 Vertical glazing, transoms visible recessed screw fittings
- 5 Vertical glazing, transoms concealed screw fittings Stainless steel bottom strip, fire seals
- 6 Vertical glazing, transoms, visible screw fittings Stainless steel cover strip, fire seals
- 7 Inclined glazing, mullions concealed screw fittings
- 8 Inclined glazing, transoms, visible screw fittings

H_1.3_002.dwg

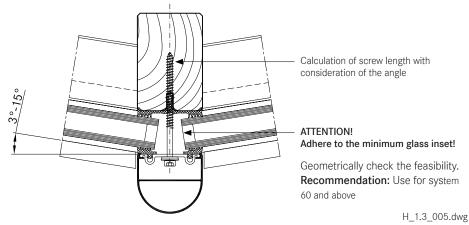
7

System details


1.3 3


Creating facade corners

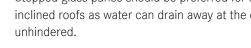
At exposed areas such as glass facade corners, it is particularly important to ensure sufficient heat insulation in order to avoid the creation of thermal bridges and prevent a build-up of condensation. Thermal current calculations provide information about the actual heat loss.


Outer corner

Facade polygon

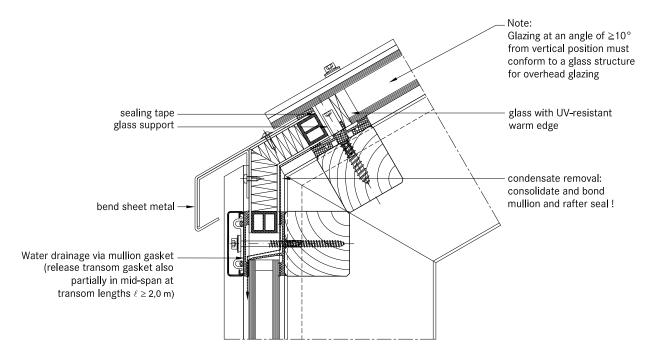
Special seal allow a polygon shaped arrangement of the facade mullions. For convex glass surfaces an angle between 3° and 15° can be freely chosen. For concave glass surfaces the angle can vary between 3° and 10°.

Norden Facade H Design


System details

Eaves with glass roof connection

- Depending on the construction of the transoms, a design with or without rain gutters and the choice of stepped glazing or closable cover strips gives us different variants for implementation.
- All options require condensation and moisture to be drained away at the eaves.


Design with stepped glazing

- With a stepped glazing design it is important to select a UV-resistant edge bonding for the glass. This edge bonding systems, usually silicone-based, are quite permeable to gases and are therefore unable to achieve the required high values for sound and heat insulation of conventional systems and require additional sealing around the edges.
- Our thermal calculations show that stepped glass panes, compared to covered glass edges, have a much less favourable isothermal movement.
- Stepped glass panes must also be statically measured according to their reduced hold against wind suction.
- The additional thermal loads that occur in stepped glass panes should countered by the use of pre-tensioned glass (TVG, ESG) for the outer panes.
- Stepped glass panes should be preferred for flatter inclined roofs as water can drain away at the eaves

Example 1:

Design with stepped glazing

H_1.3_006.dwg

Norden Facade H **Design**

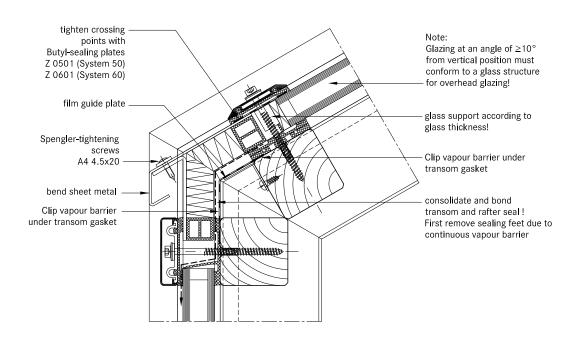
System details

1.3 3

Eaves with glass roof connection Design using cover strips

- Horizontal pressure strips prevent the free run off of rain water and dirt.
- Cover strips with angled edges reduce the build up of water in front of the cover strip.
- The outer sealing level on glass roofs must also be thoroughly sealed.
- In combination with our butyl clad stainless steel panels, glazing with pressure strips on 4 sides achieves a higher level of safety.
- Make sure that the inner sealing section provides guaranteed drainage for condensation.

 To improve drainage and heat-induced expansion, cover strips should be shortened by 5 mm at transom joints. Gasket joints, however, are to be laid flat with a slight excess in dimensions. Open ends of the transom cover strips must be sealed.



Note:

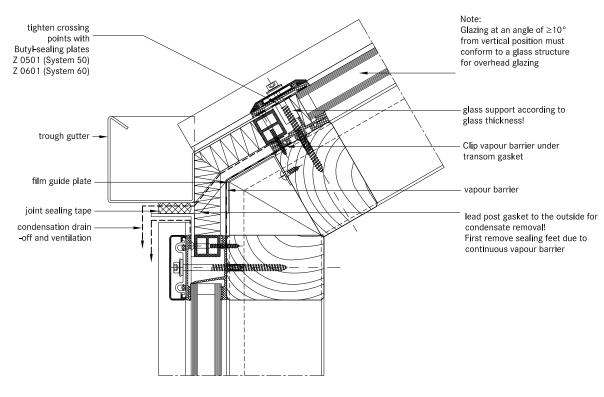
Due to the increased thermal stresses in the roof, we recommend using concealed screw fitting when choosing clamping strips for larger system lengths and in rafters. Unused holes in the pressure profile must be sealed.

Example 2:

Design using cover strips

Norden Facade H **Design**

System details


<u>1.3</u>

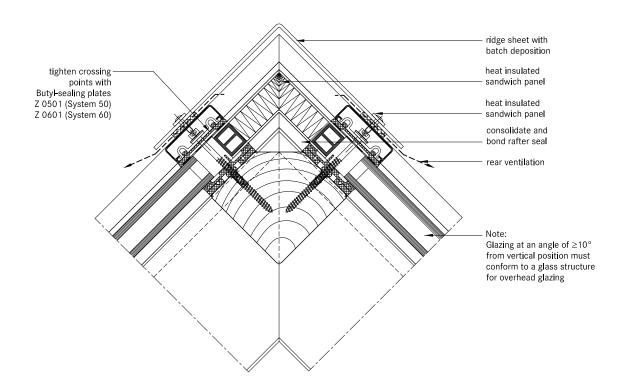
Eaves with glass roof connection Design with gutter

- The gutter must be able to take its own weight and mounted in such a way that stresses from its own weight, water and ice will not lead to deformations and directly apply a load to the glazing.
- Overflowing water must not be able to get inside the structure. Alongside the gutter-shaped outer rafter seal, the moisture barrier installed over the guide plate also acts to drain away condensation.

Example 3:

Design with gutter

Norden Facade H **Design**


System details

1.3 3

Roof ridge design

• When designing the ridge cap, ensure that the rafter cover strips are pulled under the ridge cap.

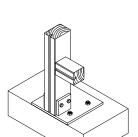
Norden Facade H **Design**

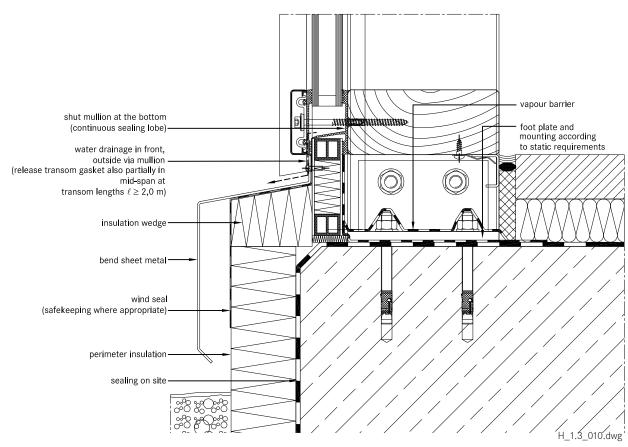
Structural attachments

1.3 4

Structural attachment film baffles

- Attachment of glazing to the building structure requires a well thought out approach.
- Moisture damage can occur if moisture condenses at any thermal bridges.
- Thermal bridges must be avoided and warm air from the inside spaces must not penetrate too deeply into the structure.
- The required moisture barriers must be installed as deeply as possible into the inner space using impermeable structural film baffles. This prevents moisture penetration into the structure via condensation from the air inside.
- An additional foil to seal against rainwater must be permeable to moisture. Only if this foil has a water vapour diffusion resistance value μ of max. μ
 = 3000 can a dry structure be guaranteed in the transition zones.


1.3 4


Facade base

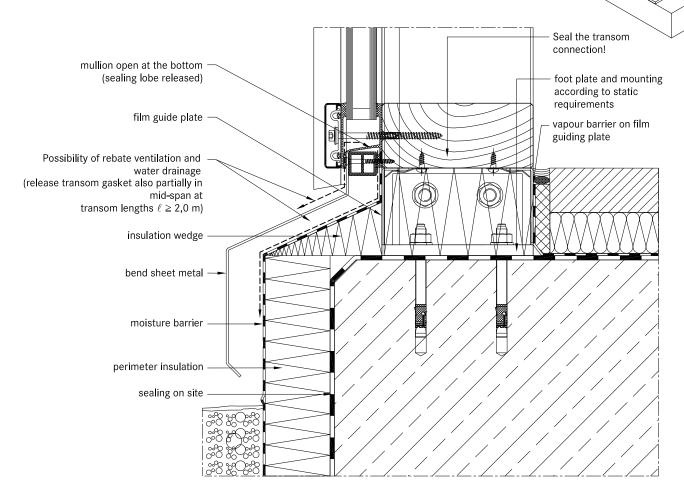
- Controlled drainage of the rebate space can only be ensured if the sealing sections overlap in such a way that no moisture can get under the seals and foils
- Run foils under the transom seal to act as a moisture barrier and glue to the wooden structure. In accordance with DIN 18195 the seal should be run at least 150 mm above the water-guiding layer.
- Attach foil with moisture barrier in accordance with the requirements of DIN 18195.

Example 1:

Mounting intermediate mullion to base plate

Drainage of the base area is achieved via the seal flap towards the outside. In this case the seal flap around the mullion at the base should not be released. For edge mullions, ensure there is a corresponding seal placed (continuous transom seal up the to the end point) and a constructive design of the drainage section.

1.3 4


Facade base

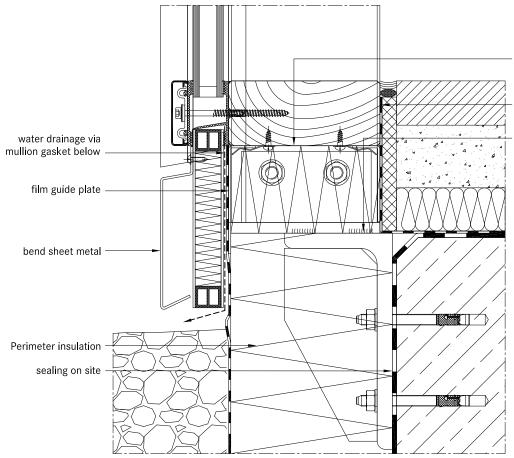
- Rebate space ventilation is achieved via the open end of the vertical cover strips.
- Ensure the connection is impermeable to vapour.
- Mullion mountings must be sufficiently statically dimensioned. Required axis and edge distances for anchoring the base plates and in the building structure must be observed.

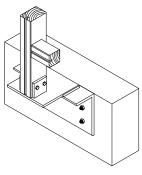
Example 2:

Mounting intermediate mullion to base plate

Where seal flaps are interrupted by joints, filler rods in the joint must also be cut.

1.3 4


Facade base


- Heat insulation around the structural connection should be designed in such as way as to prevent cold bridges forming.
- Steel parts should also be provided with sufficient protection against corrosion even in concealed areas.
- Weather-protection sheets should be used depending on the requirements of the construction. Sufficient rear ventilation must be ensured.

Example 3:

Attaching intermediate mullions at base plates

Seal the transom connection!

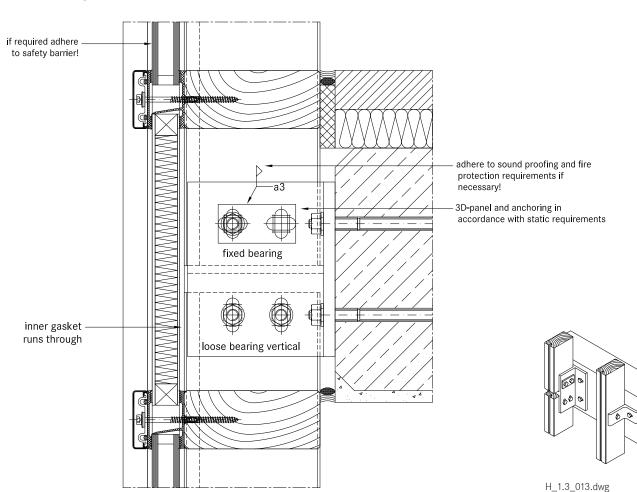
vapour barrier

panel and anchoring in a with static requirements

<u>1.3</u>

Connection before intermediate floors

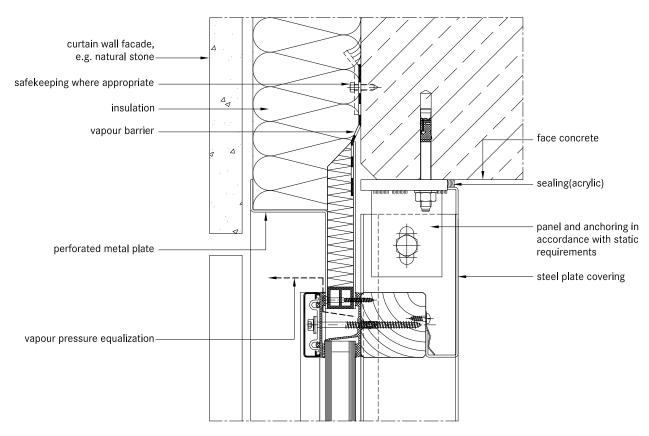
- Depending on requirements, mullions are designed as continuous multi-span transoms or separated at each floor.
- Reasons for separating mullions can include e.g. building settlement, fire protection, sound insulation, etc.
- If the separation joint is intended to absorb expansion, then as well as the required degree of freedom for mullions the ability for movement of integrated elements must also be ensured.
- The constructive design of the mullion joint and mounting should be chosen according to the statically calculated base system and determines the


- choice and arrangement of fixed and movable bearings, type of screw fittings, structural connection parts and attachment to the concrete floor.
- With continuous mullions and a corresponding mount the multi-span support principle is in effect. Sagging due to horizontal effects is lower. The required moment of inertia reduces for 2-span supports with the same span length compared to the 1-span support by a factor of 0.415. However, a tension and stability analysis should be carried out.

Example:

Mullions separated at each floor

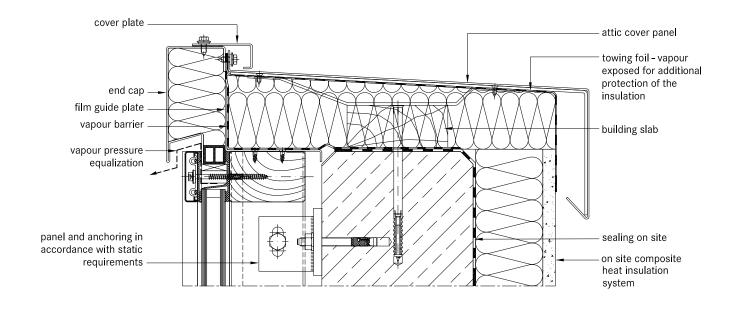
In this example, distribution of horizontal and vertical loads is achieved at each floor through the existing floor structure.



1.3 4

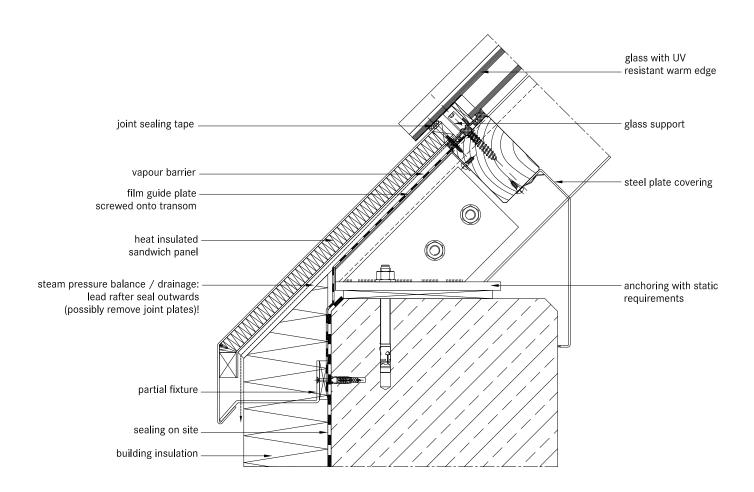
Ceiling connection

- Structural connections should take account of any movement that may occur.
- As well as temperature induced expansion in the facade, all longitudinal expansions and movements of the affected components must be considered.
- Additional stresses from restraints must be avoided



1.3 4

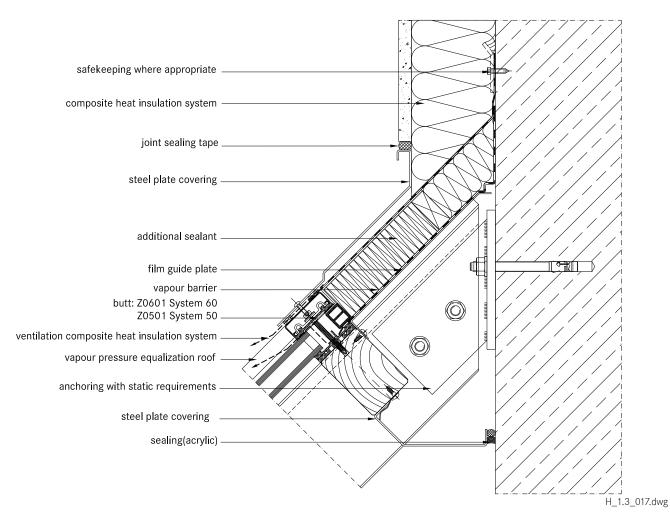
Facade connection to parapets



1.3 4

Connection to structural eaves

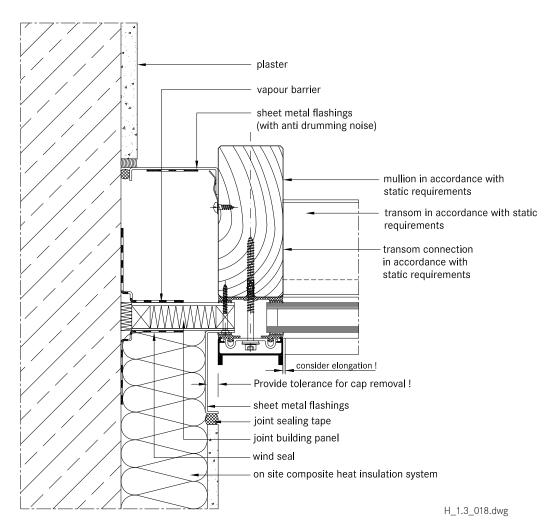
 This connection is suitable for glass roofs that are being installed as skylights in the structure. These may be gabled roofs, single pitch roofs, pyramids or arched roofs.



1.3 4

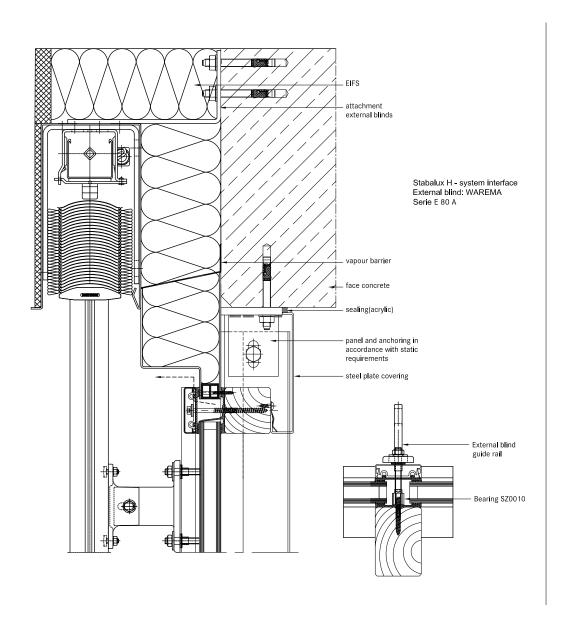
Ridge connection to walls

- When making ridge connections to walls, permeability to moisture is particularly important. Warm air with a high level of moisture gets into cooler zones of the inner sealing section where the design is not sufficiently sealed and can cause structural damage from penetrating into the connecting structure.
- Joint seals made from butyl-clad stainless steel plates (Z 0501, Z 0601) must be installed on the outside of joint areas.

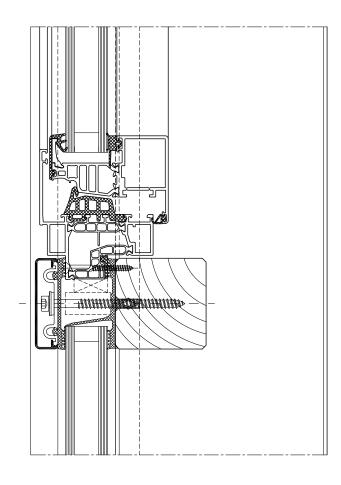


1.3 4

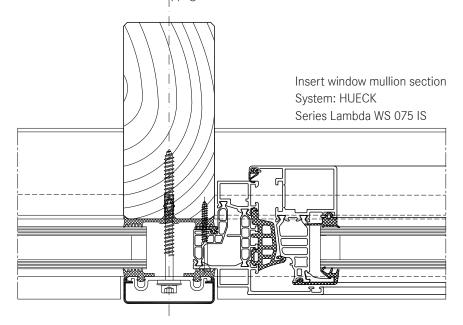
Horizontal wall connection to heat insulation bonding system



1.3 4

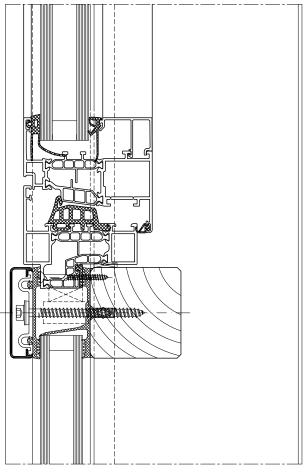

Ceiling connection including WAREMA external blinds

1.3 5

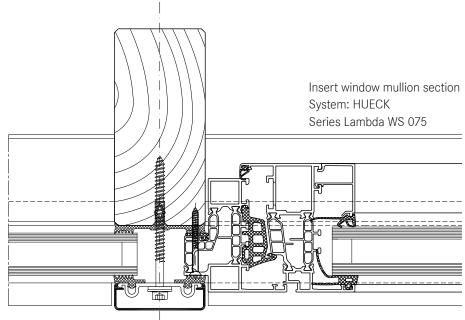

Insert window transom section

System: HUECK

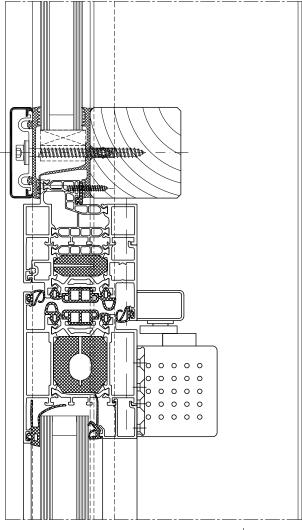
Series Lambda WS 075 IS

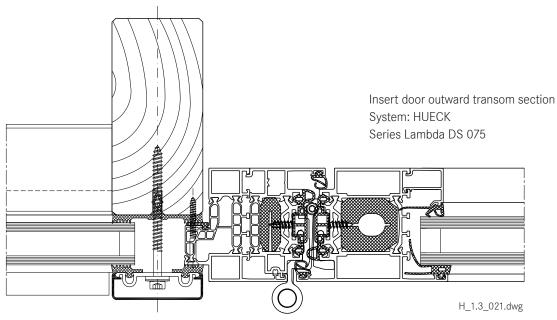


Mullion and transom facades and glass roofs from Norden Facade are neutral with regards to the selection of in-sert elements. All commonly available window and door systems made from steel, aluminium, wood or plastic can be used. Frame profiles from the window and door man-ufacturer's should be selected to match the chosen glass thickness. If no profiles with a suitable insert rebate are available, mountings may be used as shown in the fol-lowing examples. Like with glass elements, windows are set into the facade on glass supports, padded and then secured against slippage.

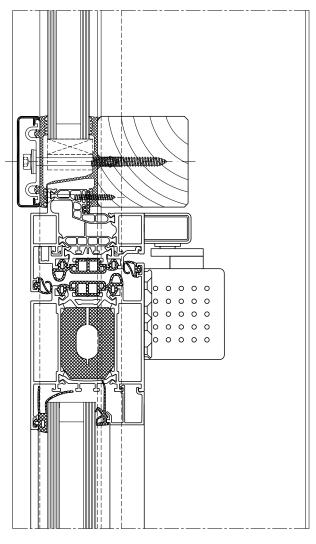


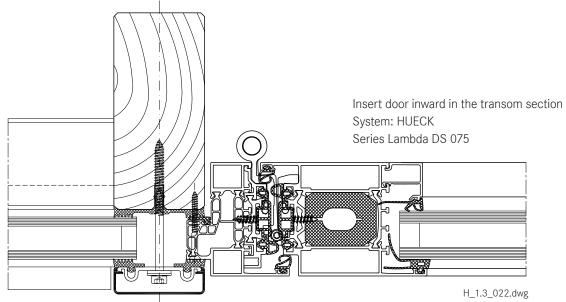
1.3 5


Insert window transom section System: HUECK Series Lambda WS 075

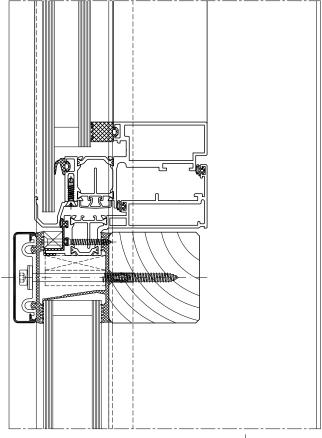


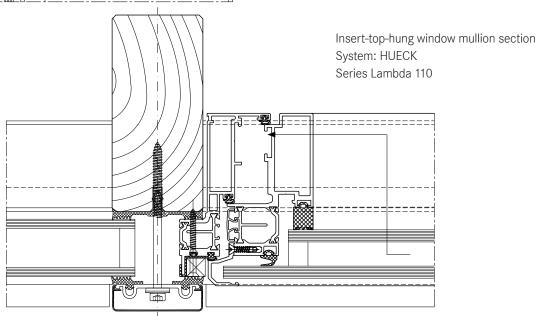
1.3 5


Insert door outward transom section System: HUECK Series Lambda DS 075

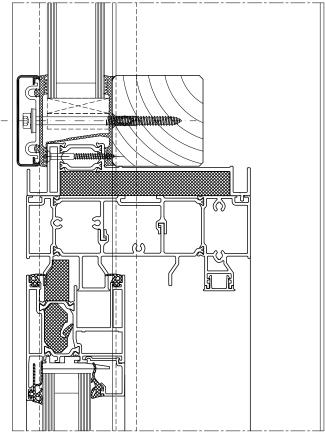


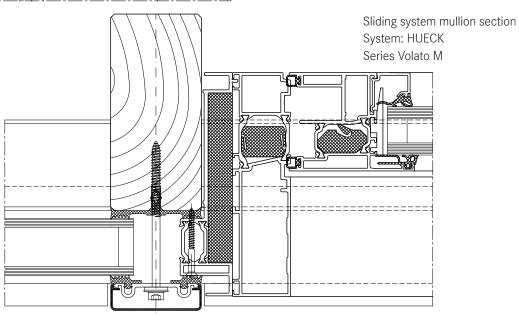
1.3 5


Insert door inward in the transom section System: HUECK Series Lambda DS 075

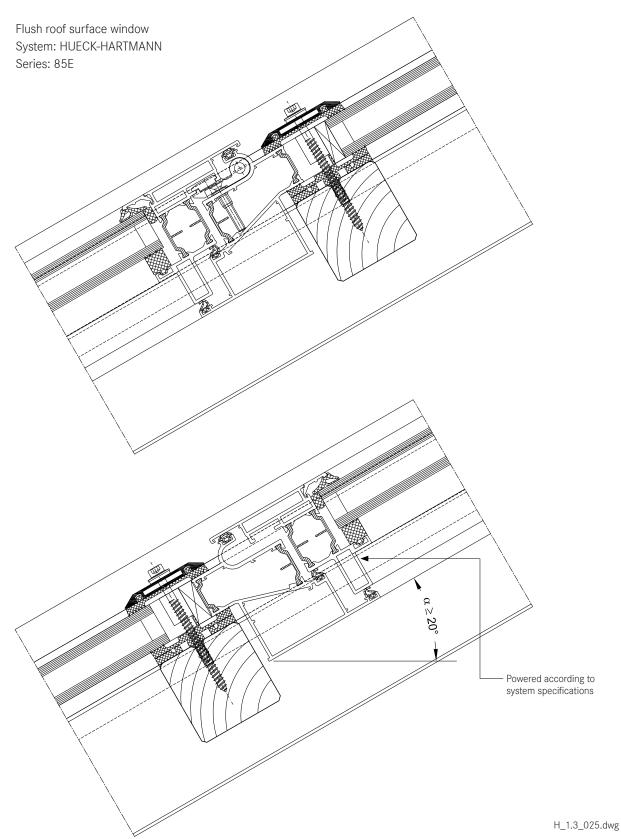

1.3 5

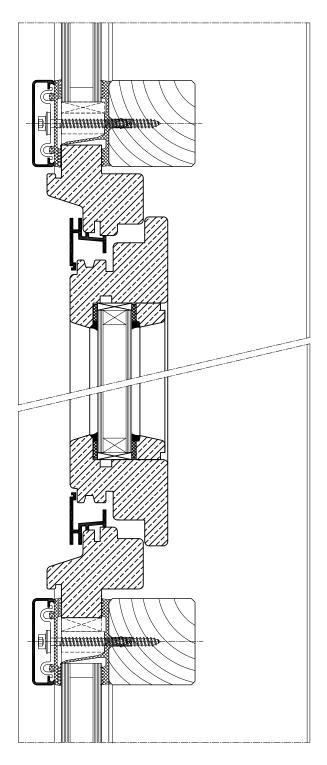
Insert-top-hung window transom section


System: HUECK Series Lambda 110

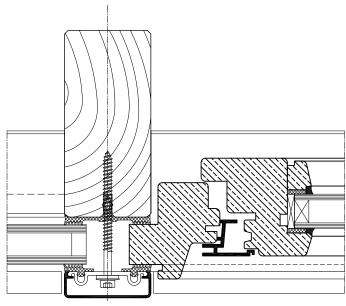


1.3 5


Sliding system transom section System: HUECK Serie sVolato M



1.3 5


1.3 5

Insert window - transom sections wood windows

Insert window - mullion section wood windows

